Dark mode
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /  Smartwatches & Trackers
Smartwatches & Trackers 

Articles, reviews, useful tips

All materials
Reviews of brands from the category smartwatches & trackers
Rating of brands from the smartwatches section based on reviews and ratings of site visitors
Summer show: all the announcements of the Samsung Galaxy Unpacked 2022 event
TSW headphones, a duo of smartwatches and a couple of flip phones with flexible screens
Apple WWDC recap: everything you need to know about the new era of Apple
Innovations in iOS 14 and iPad OS, mobile processors for laptops and a common operating system for all Apple gadgets
What is IP67/68 and MIL-STD-810? Electronic Device Protection Standards
In simple words about common standards for protecting gadgets from all sorts of adversities
Apple's hottest: AirPods Pro 2 headphones, Watch 8 and Ultra smart watches, iPhone 14 lineup
TWS headphones, a trio of new Apple Watches and a quartet of smartphones from the iPhone 14 lineup
Hot news from Xiaomi: Band 7 Pro fitness tracker, Home Wi-Fi MESH system, 12S generation smartphones and Book Pro laptops
Pro version of the iconic fitness bracelet, trio of top smartphones and a few more "hot" new products from Xiaomi

Smartwatches & Trackers: specifications, types


Smartwatch. A wristwatch gadget designed to be used in conjunction with a smartphone, usually with a Bluetooth connection. Such a watch can be used to receive notifications of incoming calls or messages, to control various smartphone features; and the most advanced models even allow the installation of their own applications and differ from watch-phones only in the inability to make calls on their own. In turn, the difference from fitness trackers (see below) lies primarily in a more traditional design and broader specialization: smartwatches often have fitness sensors and support specialized data collecting, but their use is not limited to this.

Watch-phone. Smartwatch with its own mobile communication module. Such devices are capable of making calls, sending messages, and in most cases even using the mobile Internet without connecting to a smartphone or other external device. However, a Bluetooth headset may be required for voice convenience, and smartphone connectivity is also available on many models. The specific features of such gadgets can be different, it should be specified separately.

Fitness tracker. Specialized wrist gadgets designed mainly for sports. Typically, such a gadget has a long and narrow body, the width of which may not exceed the width of the strap; this arrangement is considered the most...convenient in view of the application. As for the features, fitness trackers mainly record various data about the state of the body and health of the user, ranging from heart rate to blood oxygen levels, sleep phases, and other specific parameters. In addition, traditional features such as call or SMS notifications can also be provided, but in this case they are of secondary importance. Displays in fitness trackers are usually the simplest, and in some models there is no screen at all — it is still more convenient to view detailed data on physical activity in the application on a smartphone.

Beacon for children. Wrist devices to ensure the safety of children; most often — a specialized type of watch-phone (see above). The beacon performs primarily two main features: it allows parents to control where the child is, and provides communication between the child and the parent (including in emergency situations). Specific features may vary, for more details see "Parental Control". In addition, the design often provides for other features of smartwatches — from an alarm clock and time display to a pedometer, heart rate monitor and other special data collecting.

— For animals. Gadgets designed for pets — primarily dogs. Such a device is usually attached to a collar and can perform quite a variety of features: a beacon that transmits data about the location of the pet, a “calling card” with the owner’s contact information, and even a fitness tracker that tracks the activity of the animal and allows you to monitor its health.

— Smart glasses. Wearable smart gadgets made in the form of glasses. Usually, a camera is built into the frame of such a gadget, and the display is located opposite one of the user's eyes. Initially, smart glasses were considered quite a promising development, but in fact, for a number of reasons, they did not gain popularity, and nowadays they are almost never used.


The main way to connect a wrist gadget with external devices. For smartwatches and fitness bands (see "Type"), this refers to a connection to a smartphone or tablet, while in the case of watch-phones, it usually refers to headsets.

— Bluetooth. Wireless technology for direct communication of various devices with each other. This is the most popular interface in smartwatches and bracelets: Bluetooth modules can be made very tiny, the communication range even in the earliest versions reaches 10 m, and different generations of Bluetooth are mutually compatible in terms of basic functionality. Specifically, the versions nowadays are as follows:
  • v2.0. The earliest standard used in modern wearable gadgets. The possibilities of such a connection are more modest than those of more advanced versions, but they are often quite enough.
  • v3.0. A standard that combines classic Bluetooth v 2.0 and a high-speed “add-on” for transferring large amounts of data.
  • v4.0. Further, after 3.0, improvement of Bluetooth: in addition to the classic and high-speed format, this version added Bluetooth Low Energy technology. Support of this technology is especially useful in fitness trackers, which usually transmit small amounts of data, but constantly.
  • v4.1. Modification of the 4.0 standard described above with improved protection against interference while working with LTE mobile communications.
  • ...v4.2. Another improvement of the 4.0 standard, which introduced, in particular, improved data protection and increased connection speed.
  • v5.0. The fifth generation of Bluetooth, released in 2016. One of the most interesting improvements is the introduction of two special modes of operation for Bluetooth Low Energy: extended range (by reducing speed) and increased speed (by reducing range).
— USB. Wired connection to a computer/laptop using a USB cable. A rather specific option, found in some fitness trackers and children's beacons. During working hours, such a gadget functions completely independently, and the USB connection is used only occasionally, for some special tasks: transferring collected data to a computer, charging the battery, changing some settings, etc. This is not as convenient as a permanent connection via Bluetooth, therefore, in wearable gadgets, USB is rarely used as the main connection method.

— 3.5 mm (mini-Jack). Another wired connection method, almost completely similar to the USB described above and differing only in the type of connector. Also, the 3.5 mm plug is designed mainly to work with smartphones and tablets, and not with computers. However, it is also extremely rare.


The device supports ANT+ wireless data transfer technology.

This technology is designed specifically for use in sports equipment, including wearable gadgets. It allows you to transmit secure data over a wireless channel with a frequency of 2.4 GHz at a distance of up to 30 m in open space. At the same time, the data exchange rate is very low — 12.8 kbps in normal mode and up to 60 kbps in "forced" mode — however, ANT + was originally designed for small amounts of information, moreover, this format of operation provides extremely low power consumption. With all this, several elements can be easily combined into one network (for example, smart watches, a heart rate monitor, and even smart home control panels). These elements will coordinate their work with each other — wait for free air for transmission so as not to “interrupt” each other, and even work as repeaters for each other when the signal from a certain part of the network is weakened and direct communication with the central unit is impossible. The role of the central unit can be played, for example, by a smartphone — ANT + support is provided in many such gadgets; and if it is not initially available, you can install a special application and communicate through an external adapter.

This standard is generally accepted; this means that ANT+ devices will be compatible with each other regardless of type and manufacturer.

Gadget OS

Operating system is firmware that allows you to install additional applications. In addition, the operating systems themselves usually have quite extensive features — for example, tight integration with certain web services. Most popular options:

Android. The Android mobile OS is known mainly for smartphones and tablets, but the open source code allows you to optimize it for other devices, including wrist ones. It should be noted that traditional Android applications are mostly poorly compatible with wrist gadgets, however, some programs are able to automatically adapt to such devices, and specialized software is also released for many models (often by manufacturers themselves).

WearOS. The system formerly known as Android Wear. This is a specific version of Android, originally designed as a solution for wrist gadgets. It features a radically redesigned interface, tight integration with the Google Assistant, as well as the so-called proactive notifications. Thanks to the latter, the device is able to independently, without a request, issue extended tips for a specific situation: for example, before an important meeting, lay a route on the map, taking into account traffic jams and, if necessary, turn on a reminder even earlier than originally planned.

Tizen. An open operating system for mobile devices promoted primarily by Samsung. As...with Android, the original Tizen is not well suited for smartwatches, so it is usually a special version of Tizen Wearable. It is worth noting that there are tools that allow you to run Android applications on devices with this OS.

— WatchOS. An operating system specially designed for Apple wrist gadgets and used only in them. Among the key features, it is worth noting support for the Siri voice assistant and the Apple Pay system, a set of fitness tools, as well as a high degree of optimization for Apple Watch controls. WatchOS uses its own applications, which can also be created by third-party developers.

— Nucleus. A rather rare and unusual OS: it does not refer to a general-purpose OS, but to real-time systems. Such systems are optimized for the fastest response to external events (whereas in conventional operating systems, the reaction occurs depending on the allocation of resources). Specifically, Nucleus has all the features necessary for wrist gadgets, however, for a number of reasons, such firmware is quite rare.

HarmonyOS. Huawei's Universal Operating System, also known as Hongmeng. Provides operation of a wide range of devices: appliances from the smart home ecosystem, smart watches, smartphones and tablets. On wearables, Harmony OS is a rebranded version of the homegrown Lite OS used in Huawei watches and other low-end devices.

SIM card support

Type of SIM card for which the gadget is designed. SIM cards are required for mobile communication modules, which are mainly found in watch phones and children's beacons (see "Type"). And their types can be:

Micro-SIM. Reduced in size and improved, in comparison with the obsolete mini-SIM, a variety of SIM-cards: the dimensions were reduced to 15x12 mm, while the amount of built-in memory and the overall functionality of the chip were slightly expanded.

Nano-SIM. The newest and smallest variety of replaceable SIM-cards: it has dimensions of only 12x9 mm.

It is worth noting that nowadays, most mobile operators sell SIM cards that are compatible with all three types of slots at once: the chip itself has a nano-SIM format, and such a card can be installed in a micro-SIM or mini-SIM slot using an adapter frame. So paying attention to the type of SIM card makes sense, first of all, if you already have a "sim card" of a strictly defined format and you do not want to change it.

A separate variety is represented by e-SIM(Embedded SIM) — non-removable modules that need to be programmed for a particular mobile operator. On the one hand, this creates some inconvenience: to change the number, changing the SIM card can be easier than reconfiguring the e-SIM. On the other hand, e-SIMs are more compact and...better suited for wrist gadgets, and when you change your number, you do not need to spend money on buying a new card. The compatibility of such a module with the network of a particular operator should be specified separately.

Calls and alerts

Types of notifications, as well as basic voice communication features supported by the gadget.

Call notifications. Notifications about calls coming to the smartphone connected to the gadget, and for watch-phones — about calls to the watch itself. In classic smartwatches and fitness trackers (see "Type"), the specific functionality of such notifications can be different — from the usual sound or vibration signal to the ability to see the caller's number on the screen and accept/reject the call. But anyway, such notifications are often more noticeable to the user than the own signal of a smartphone deep in a pocket or bag.

SMS notifications. Notifications about SMS messages received either on a smartphone connected to the gadget, or on the gadget itself, if it is capable of receiving messages (all watch phones and many children's beacons have this capability, see "Type"). The specific features of notifications can be different — from the icon "you have received a message" to the ability to read SMS and reply to it. Anyway, this feature often provides additional convenience — at least it reduces the likelihood of missing an important notification, and often also eliminates the need to once again take the phone out of your pocket / bag.

Voice control. The ability to control the device through voice commands. In order for a smartwatch or f...itness tracker to perform some simple feature, it is enough to say its name aloud.

Voice assistant. In watches with voice assistant support, the level of user interaction with the device is displayed in a new qualitative way. The most popular virtual assistants are Google Assistant and Amazon Alexa. In Apple devices, the role of an assistant is performed by Apple Siri, in Samsung wearable gadgets — a virtual assistant Bixby. Unlike the voice control function, the assistant does not just turn on this or that feature, but allows you to perform certain operations in applications that require feedback.

— Sound signal. The ability to give sound signals using the built-in speaker. This feature will be useful primarily in situations where the gadget is not on hand — for example, if it is used as an alarm clock and is removed at night.

— Vibration. Vibration signal similar to that used in mobile phones. In wearable gadgets, such a signal is especially convenient due to the fact that the device is constantly in contact with the wearer's skin, so that the vibration is perfectly felt — and regardless of the level of noise around. In addition, vibration mode is also useful in quiet environments where a loud sound signal is undesirable.

— Built-in microphone. Own microphone built into the body of the device. Such equipment can be used for different purposes, depending on the type and features of the gadget. First of all, voice communication is impossible without a microphone. Another feature for which a microphone is required is the voice assistant (see above). And in children's smartwatches, it may be possible to remotely turn on the microphone from the parent gadget and listen to what is happening around the child; see the relevant paragraph below for details.

Speakerphone(speaker). The ability to work the gadget in hands-free mode, using the built-in speaker and microphone for conversation. In a conventional smart watch (see "Type"), this feature allows you to talk through the watch without removing the smartphone from your pocket; in watch-phones, speakerphone allows you to do so without headphones and headsets, and for children's smartwatches, this feature is almost mandatory. However the volume of the built-in speaker is usually low, so in a noisy environment its power may not be enough.

Possible measurements

Types of sports and medical measurements supported by the gadget (plus some functions of a similar purpose, such as sleep tracking, smart alarms, stress levels and women's calendar). Note that the functions from this list can be found not only in specialized fitness trackers (see "Type"), but also in more traditional devices like smartwatches. Here are the most popular options:

Pulse rate. Heart rate is one of the most important physiological parameters of a person. So that sports training is as effective as possible, the heart rate must be in a certain range (the specific value depends on the purpose of the training and the personal characteristics of the user). And for some illnesses and treatments, a faster or slower heart rate can be an important signal, including a warning of danger.

Pressure (tonometer). A sensor that measures the user's blood pressure. Note that the accuracy of such a sensor is usually quite low, the measurement error can be 10% or even more; so it will not replace a full-fledged medical tonometer. On the other hand, a gadget with this function is quite capable of detecting a critical increase or decrease in pressure, which will allow you to take the necessary measures in a timely manner.

ECG (cardiogram). A sensor that allows you to get detailed data about the work of the user's heart. Note that such a sensor is not a full-fledged electrocardiograph — in fact, it is an advanced type of heart rate monitor that can track the features of the heart rhythm. However, even this is enough to detect some dangerous phenomena — for example, atrial fibrillation, which at first is imperceptible to a person — and take appropriate measures in time.

The level of oxygen in the blood. A sensor (the so-called pulse oximeter) that determines the saturation of the blood with oxygen (saturation); at the same time, the measurement is carried out by a non-invasive method — without punctures and other damage to the skin. Like most "medical" sensors in wrist gadgets, it is not accurate and is not a full-fledged medical device, but it is quite capable of responding to a critical decrease in the level of oxygen in the blood. It is believed that the presence of a pulse oximeter is relevant primarily for certain diseases, when saturation may decrease due to the disease itself or the characteristics of the treatment being taken. However, this function can also be useful for quite healthy users who often travel at high altitudes — primarily climbers and aeronauts.

body temperature. The presence of a sensor for measuring temperature allows you to take measurements without the use of thermometers. Naturally, errors make themselves felt, so a slight deviation from the norm may not be determined, but the device will easily fix a significant increase in temperature.

T° of the environment. Even though smartwatches are worn on the body, the built-in sensors in them are usually designed to measure the ambient temperature. This information can be useful both for a general assessment of the surrounding conditions, and for specific purposes — in particular, weather forecasting. It is not uncommon for watches with this feature to also have a barometer (see Navigation).

— Number of steps. The traditional pedometer is a function for counting the number of steps taken by the user. These measurements usually use data from the accelerometer, and the results are quite accurate: most modern accelerometers are well calibrated and are quite capable of distinguishing tremors during steps from hand waves and other extraneous movements. The exception is trips in land transport: many wrist gadgets perceive shaking as steps, which should be taken into account when evaluating the results.

— Distance travelled. Measurement of the total distance traveled by the user. For this, either data from a pedometer or a GPS module are usually used (see "Navigation"); each option has its own merits. So, the pedometer is cheaper, it can be used even in rooms without windows, where the signal from satellites does not reach, and on simulators like treadmills, where the user does not move relative to the ground. GPS, in turn, gives higher accuracy, especially over long distances, and is not prone to false positives in vehicles. In some advanced gadgets, these methods can be combined — this is not cheap, but it allows you to combine the advantages of both options and achieve maximum accuracy.

— Movement speed. Determining the speed of the user's movement. As with distance travelled, measurement can be done in a variety of ways; see above for more details. Also note here that many gadgets with this function are able not only to determine the current speed, but also to constantly record its value and display various indicators: the maximum achieved speed, the average value for training, etc.

— Energy expenditure (calories). Measurement of the number of calories burned by the user in the process of movement. These data are rather approximate, as they are calculated by indirect parameters (speed and range of movement, personal characteristics of a person, etc.). However, even this accuracy is quite enough to determine the overall effectiveness of training.

— The amount of fat burned. Measuring the amount of fat burned per workout. As in the case of calories (see above), the result of such measurements is quite approximate. However, in fact, absolute accuracy is not required, and fat loss data can be a powerful motivator.

— Activity time. A measurement of the total time during which the user is actively moving. In many models, such metering may provide additional options, such as fixing several periods of activity with breaks between them and determining the ratio between the time of movement and the time of rest.

— Smart alarm. An alarm clock that monitors the user's sleep phases and gives a signal to wake up at the optimal time for this. Human sleep consists of alternating phases, and waking up in the "unfortunate" phase creates a feeling of lethargy and fatigue, even if there was enough time to sleep. A smart alarm clock avoids such situations; its work is based on tracking the pulse, breathing rate and other parameters that differ depending on the phase of sleep. Note that the deviation of the signal from the set time can be up to half an hour, but this is usually a deviation towards an earlier rise. As a result, the risk of being late with a smart alarm clock is zero, and the “lack of sleep” time is compensated by the optimal moment of awakening.

Sleep tracking. Sleep quality assessment is based on data from on-board sensors of fitness trackers or smart watches. In particular, the heart rate monitor controls the number of contractions of the heart muscle, the accelerometer controls the user's movements. A blood oxygen sensor, if available on the wearable, improves the accuracy of sleep quality data collection. According to the readings of the sensors, the moments of entering and exiting the deep sleep phase are recorded. It is during this period that the restoration of the nervous system and the accumulation of energy for the coming day take place. In deep sleep, a person can completely reboot and gain strength, while in REM sleep, brain activity practically does not differ from the state of wakefulness. The sleep quality analysis feature helps you determine the best time to go to sleep and provides personalized recommendations to improve your night's sleep.

— The level of stress. The level of stress of the body allows you to evaluate the metric that determines the variability of the heartbeat — the difference in time between successive contractions of the heart muscle. Respiration rate, maximum oxygen consumption and excess oxygen consumption after exercise are also taken into account. The stress level score gives a clear picture of the user's experience during the day, however, the value of this parameter lies in determining the most optimal body regimen for training. A high heart rate variability usually indicates you are in good shape for playing sports, while a low one can indicate fatigue, dehydration, or feeling unwell. All this directly affects the ability to train effectively. There are no clear units for measuring the level of stress — in smart watches, the parameter is usually shown as a scale from 0 to 100, often indicating the number of hours the body is under stress and the time it takes to recover to a normal state.

— Women's calendar. The tool for tracking the menstrual cycle in the fair sex keeps abreast of the events of the expected dates of the menstrual period, allows you to determine the most favorable days for conception, helps to notice alarming symptoms in time and prevent many diseases in case of cycle disorders. Based on your total cycle length, the device calculates a predicted date for your next period. The women's calendar records cycle dates, fertility windows, and the day of ovulation. By adding your own notes to it, you can track fluctuations in sleep, appetite, fitness, mood changes and predict well-being for a particular day.

In addition to those described above, more specific types of measurements can be found in modern wrist gadgets.

Sports modes

The number of types of sports training supported by the smartwatch. The more of them, the wider the coverage of the potential audience is provided by a wearable gadget on the wrist.

The most common sports modes include running, walking, cycling, swimming, elliptical exercise, and so on. The quantity and quality of data for different sports depends on the technical level of equipment of a particular device. While some models only record heart rate and roughly calculate the number of calories burned, other smartwatches evaluate the effectiveness of a workout using a detailed list of data and even draw a conditional run track based on information from GPS satellites.

swimming mode

A training program for waterproof smartwatches or fitness trackers with water sports disciplines support. In swimming mode the wearable gadget determines the speed, distance and time of the swim, advanced instances of smartwatches measure the number of laps in the pool, calculate the frequency and efficiency of strokes in certain swimming styles. A personal assistant on the wrist evaluates the performance of water workouts and often makes recommendations to improve their effectiveness.


This block contains both various navigation systems ( GPS and GLONASS) and auxiliary functions for them ( aGPS, GPS tracking, maps, compass, altimeter (altimeter), barometer). More about them:

— GPS module. GPS satellite navigation module built right into the watch/bracelet. The initial function of such a module is to determine the current geographic coordinates; but how this information will be used depends on the specific type and model of the gadget. For example, in some devices GPS is used only for measuring the distance traveled and/or speed of movement, while more advanced models support full navigation and are equipped with built-in maps. In addition, this function is almost mandatory in children's beacons (see "Type") — it is GPS that is responsible for determining the location of the child.

— aGPS. An auxiliary function that allows you to speed up the start of the main GPS receiver. To work for its main purpose, such a receiver must update data on the location of navigation satellites; Obtaining this data in the classical way, directly from the satellites themselves, can take quite a long time (up to several minutes). This is especially true for the so-called "cold start" — when t...he receiver starts up after a long break in operation, and the data stored in it has become completely outdated. aGPS (Assisted GPS) allows you to receive up-to-date service information from a mobile operator — from the nearest base station (this function is supported by most operators nowadays). This can greatly speed up the startup process.

— GLONASS. This system is a Russian alternative to the American GPS. However it provides somewhat less accuracy, so GLONASS support is usually provided in addition to the GPS module. Simultaneous use of two systems, in turn, improves positioning accuracy.

— Maps. The function of displaying topographic maps of the area with heights, relief and types of vegetation on the clock screen. Preinstalled maps are used for visual GPS navigation without being tied to a smartphone. Often, the ability to display maps is implemented in tactical smart watches with a focus on tourism.

— GPS tracking. Many watches with the possibility of laying routes have the function of guiding by the GPS track. At the same time, the wearable gadget acts as a navigator around the area, showing the route on the screen and suggesting where it is necessary to turn in one direction or another. Some smartwatches with a pronounced touristic bias also have a “Return Route” program that allows you to go back along an already traveled route. In GPS tracker mode, trackpoints are usually recorded automatically based on the selected fixing interval. You can also mark a track point manually at any time.

— Compass. A classic compass is a device that indicates the direction to the cardinal points. Wrist gadgets usually use an electronic compass — a miniature magnetic sensor, the data from which, if necessary, are displayed on the display.

— Altimeter (altimeter). A function that allows you to determine the current height of the user's location. Note that the principle and format of the altimeter may be different. So, some models use barometer data for height measurements, others use information from a GPS sensor; the height itself can be determined relative to sea level, relative to some reference point, or in any of these ways, at the choice of the user. These details should be clarified separately.

— Barometer. A function that allows you to determine the current atmospheric pressure. One of the applications of the barometer is weather forecasting: for example, a sharp drop in pressure usually signals the approach of bad weather. In addition, information from this sensor can be used to operate the altimeter (see above); and even if the gadget does not have an altimeter, the height difference between two points on the ground can be easily calculated from the pressure difference between them.

Remote tracking

The type of remote tracking provided by the kids beacon (see "Type").

Remote tracking allows the parent to follow the map where the child is currently located. To do this, the beacon determines the current coordinates using the GPS satellite system and transmits them to the parent's smartphone or tablet. Actually, the presence of GPS is mandatory for all types of remote tracking, the difference between them is in how the data is transmitted to the parent. The options might be:

— GSM+GPS. Beacons that transmit data only through the mobile network. Note that the name "GSM" is conditional here, such models can fully work in more advanced 3G (UMTS) and 4G (LTE) networks. The main disadvantage of such a connection is the fact that it requires additional financial costs and control over the state of the account, so that the connection does not disappear at an unexpected moment. On the other hand, these costs are low, and mobile networks are available almost everywhere these days.

— GSM+GPS+Wi-Fi. Beacons capable of transmitting information both through mobile networks and through Wi-Fi access points. Due to additional equipment, they are somewhat more expensive than similar models of the GSM + GPS format, but the communication capabilities are more extensive. So, the mobile network in such devices is mainly used as a fallback in case of lack of Wi-Fi — this saves money and battery power. And Wi-Fi, in turn, can b...e available even where there is no normal mobile network.

Removal sensor

A sensor that signals an attempt to remove the device from the child's hand. Such an attempt can be made by both the attacker and the child himself — intending to outwit the parents. The removal sensor usually reacts to skin contact and is triggered if the contact is interrupted for more than 1-2 seconds; in such a situation, a notification is sent to the parent smartphone or tablet, and in some models, its own microphone is also automatically turned on so that the parent can hear what is happening around. Anyway, this feature provides additional security for the child and peace of mind for parents.

Perimeter control (geozone)

A function that allows you to control the presence of a child in a certain area of \u200b\u200bthe area — for example, the territory of a school or a children's camp. The boundaries of this area are set in the settings of the children's beacon; if the device is outside the geofence, the parent receives a signal about this on a smartphone or tablet.

Note that the specific way this function is implemented may vary. In many inexpensive gadgets, you can only set one key point on the map and a certain distance to it, when exceeded, a warning is triggered. More advanced models may provide advanced features, such as multiple key points that allow you to control the route, or the ability to manually set perimeter boundaries.

Remote microphone activation

The ability to turn on the microphone on the children's tracker on command from the parent's smartphone or tablet; after that, the gadget will broadcast sound from the microphone to the parent device. In other words, the parent will be able to hear what is happening around the child without calling him and without "giving himself away." This can be useful in some suspicious situations — for example, if the beacon signal moved away from the school building during school hours: this is not necessarily an emergency, the teacher could simply take the class to a park or stadium, but it would be useful to clarify what is happening.

Separately, it is worth touching on the moral aspect of this feature. In fact, it gives the parent the ability to eavesdrop on the child at any time; this opportunity must be used responsibly and without abuse, so as not to undermine mutual trust.

SOS button

The presence of the SOS button in the design of the children's beacon.

This feature is designed so that a child in a dangerous situation can quickly sound an alarm. Usually, the SOS button itself is large and located in such a way that it can be easily felt even blindly, without being confused with other buttons. And to protect against accidental operation, a special method of application is provided — for example, three quick presses in a row. In some models, the SOS button can even be combined with one of the standard buttons (for example, on/off).

It should also be said that the functionality of the "alarm" in different models of gadgets can be different. For example, some beacons, by pressing the SOS button, send the current coordinates to the parent with an emergency message, others dial the parent's number, but do not turn on the speaker, allowing the parent to listen to what is happening without giving himself away. Other, more specific features may be provided — all these nuances should be clarified before buying.

Speed dial

A feature that allows the child to quickly — literally in one or two button presses — dial the numbers stored in the gadget's memory. The specific features of this may vary depending on the model. For example, beacons for the smallest ones often provide only one button and only one number for speed dialing ; in more advanced models, there may already be two buttons. Anyway, such an opportunity greatly facilitates communication with the parent; and even in an emergency, it can be no less useful than the SOS button (see above).

Touch screen

The presence of a touch screen in a gadget — like those used in smartphones and tablets. Such a screen provides additional convenience: many features are easier to control with touches and gestures on the display than with buttons and other hardware. On the other hand, the touch screen significantly affects the cost of the device compared to alternatives.


The type of display installed in the watch/bracelet.

Colour. Such displays are often found in classic smartwatches and are almost mandatory for watch phones (see "Type"). They allow you to display a wide variety of types of information — not only numbers or indicators, but also pictures, videos, web pages, etc. Among the shortcomings of colour displays in this case are high power consumption (which negatively affects the battery life of the device), as well as a rather high cost.

Monochrome. There are two types of screens in this category. The first is single-colour displays, like those sometimes found on miniature MP3 players. They are significantly inferior in versatility to full-colour versions and can display only text and simple graphics, but they are cheaper and consume less power. This option is found among fitness trackers (see "Type"). Another variety of "monochrome" is e-ink, "electronic paper", known primarily from electronic books. Such displays can even be used in smartwatches — in addition to the actual colour, they are inferior to the colour versions only in the refresh rate, while consuming much less energy. The main disadvantage of e-ink is the rather high cost.

— Is absent. The complete absence of a display is typical primarily for fitness trackers (see "Type"): the main purpose of such accessories is to collect inform...ation, and other methods are often enough for notifications — the simplest light indicators, sound signals, vibration, etc. Another specific type of non-display device is the smartwatch in the form of a conventional "hand watch" supplemented with indicators on the dial and/or other means of notification.

Display type

— TFT. The simplest type of liquid crystal panel used in colour displays. They provide a relatively low, but generally sufficient image quality, while they are much cheaper than more advanced options. This type does not require backlight — more precisely, the backlight is part of the screen itself and turns on with it. Of the unequivocal disadvantages, it is worth noting that many TFT panels have rather limited viewing angles; however, as technology improves, this drawback is gradually eliminated.

— IPS. A variety of LCD panels created in an attempt to eliminate the shortcomings of TFT. There are many subspecies of IPS panels, but they all feature high colour reproduction quality, excellent brightness and wide viewing angles. The disadvantage of this option is the relatively high cost.

OLED. In this case, we mean the technology used to create the simplest monochrome displays. In such screens, each segment that makes up the image is a separate LED, which eliminates the need for external illumination (and even the display itself can be used as a flashlight).

AMOLED. Screens based on a panel of active organic light emitting diodes. Similar to various types of TFT, this technology allows the creation of high-resolution colour displays. Its key feature is that the screen doe...s not require a separate backlight system — in AMOLED panels, each pixel glows independently, resulting in somewhat lower power consumption. At the same time, such screens are distinguished by good colour reproduction quality, excellent brightness and wide viewing angles, however, they are much more expensive than TFT.

Super AMOLED. An enhanced version of the AMOLED technology described above, delivering more expansive colour reproduction and brightness, as well as improved touch accuracy and speed, all at a thinner display and lower power consumption. In addition, the degree of reflection of external light is reduced, such a panel gives less glare and is better visible in sunlight.

— E-Ink (E-Paper). Displays made using "electronic paper" technology; in addition, this category also includes screens such as Memory LCD. The classic E-Ink screen is black and white, does not have a backlight (however, it can be built into particular gadgets), has a very low refresh rate and is poorly suited even for stopwatches, not to mention videos or animated pictures. On the other hand, "electronic paper" is perfectly visible in bright light and has a very low power consumption: it requires electricity only when the image is changed, while a still image remains visible even when the power is completely turned off. Memory LCD screens, in turn, with the same advantages, are almost as good as classic LCD panels in terms of refresh rate, but for a number of reasons they are not widely used.

Transflective. A specific type of LCD panels that can work both due to its own backlight and due to reflected light. In bright external light (for example, in the sun), such a screen effectively reflects it and does not require a separate backlight — however, it is still included in the design and turns on in low light. This type of operation can significantly reduce power consumption compared to traditional LCD screens, where the image is not visible without backlight; in addition, good visibility in bright light is also an important advantage. The main disadvantage of panels of this type is their high cost; in addition, they are made mostly monochrome.

Screen size

The size of the display installed in the gadget; for round screens, respectively, the diameter is indicated.

A larger screen, on the one hand, is more convenient to use, on the other hand, it significantly affects the dimensions of the entire device, which is especially critical for wrist gadgets. Therefore, manufacturers choose the display size in accordance with the purpose and functionality of each specific model — so that there is enough space on the screen and the device itself is not too bulky.

It is also worth mentioning that screens with a similar size may have different aspect ratios. For example, traditional smartwatches are usually equipped with square or round panels, while in fitness trackers, screens are often made elongated in height.

Screen resolution

Screen size in dots (pixels) horizontally and vertically. In general, this is one of the indicators that determine the image quality: the higher the resolution, the clearer and smoother the picture on the screen (with the same size), the less noticeable are the individual dots. On the other hand, an increase in the number of pixels affects the cost of displays, their power consumption and requirements for a hardware platform (more powerful hardware is required, which itself will cost more). In addition, the specifics of using smart watches is such that there is simply no need to install high-resolution screens in them. Therefore, modern wrist accessories use displays with a relatively low resolution: for example, 320x320 with a size of about 1.6" is considered quite sufficient even for premium watches.


The density of dots on the screen of the gadget, namely, the number of pixels that fall on each inch of the matrix vertically or horizontally.

The higher the PPI, the higher the detail of the screen, the clearer and smoother the image is. On the other hand, this indicator affects the price accordingly. Therefore, the higher the density of points, the more advanced, usually, this gadget is in terms of general capabilities. However, when choosing a screen, manufacturers take into account the general purpose and functionality of the device; so that even a small number of PPIs usually does not interfere with comfortable use.

Watch face protection

The material from which the transparent cover of the display is made.

Plastic. Inexpensive, moreover, quite durable and impact-resistant material: even with a strong impact, the plastic is more likely to crack than crumble into fragments. At the same time, scratches easily appear on such a surface, and over time it inevitably becomes cloudy. Because of this, plastic is found predominantly in inexpensive wrist gadgets.

Glass. In this case, it can mean both classic silicate glass (the same as, for example, in windows), and some original types of impact-resistant glass that are not related to Gorilla Glass(see below). Regular glass costs more than plastic, but not by much, and it looks better and stays clear longer due to its scratch resistance. The main disadvantages of this material are fragility and a tendency to crumble into sharp fragments upon impact. Impact-resistant glass types are devoid of this drawback to one degree or another, but they are also more expensive. According to the price category of the gadget, you can quite accurately determine what kind of glass it uses — ordinary or shock-resistant.

Sapphire. The coating made of synthetic sapphire is used exclusively in premium-class gadgets — this is due to the complexity of its production and, accordingly, the high cost. On the practical side..., sapphire is extremely scratch resistant (it is only possible to scratch such glass with a diamond or special tools), but at the same time it is fragile and easily breaks from impact.

— Gorilla glass. A family of shock-resistant glass types created by Corning and widely used in modern electronics, including wrist gadgets. In addition to strength, Gorilla Glass is also distinguished by good scratch resistance, while being relatively inexpensive (by the standards of such a coating), which has led to their popularity. However, the specific properties of such glass depend on its version; Here are the options that are relevant for modern wrist devices:
  • Gorilla Glass v3. The oldest current version was released in 2013. Nevertheless, even such a coating is noticeably superior to traditional glass (not to mention plastic) in terms of transparency and scratch resistance.
  • Gorilla Glass v4. Version released in 2014. A key feature was that the development of this coating focused on impact resistance (whereas previous generations focused mainly on scratch resistance). As a result, the glass turned out to be twice as strong as in version 3, despite the fact that its thickness was only 0.4 mm.
  • Gorilla Glass SR+. The first version of Gorilla Glass, designed specifically for smartwatches and other miniature wrist gadgets; presented in 2016. According to the creators, the scratch resistance of such coatings approaches those of sapphire glass while maintaining the main advantages of Gorilla Glass — high strength and transparency. In general, for this material, superiority over "alternative options" is claimed by 70% in terms of strength specs and by 25% in terms of optical properties.
  • Gorilla Glass DX. Another type of glass, specially designed for wrist devices. It was released in 2018 at the same time as the DX+ version (see below). Of the key improvements in Gorilla Glass DX, in particular, increased anti-reflective properties and an increase in the contrast level of the visible image by 50% are announced; the latter, among other things, allows you to reduce the actual brightness and, accordingly, the power consumption of screens without compromising image quality, which is especially important for miniature wrist devices. And this material differs from the DX+ type coating, on the one hand, by lower scratch resistance, and, on the other hand, by higher anti-reflective specs.
  • Gorilla Glass DX+. Almost the same as the original version of DX, related to the same specialization — wearable wrist gadgets and other miniature devices. At the same time, DX + has a higher scratch resistance, but has slightly worse anti-reflective specs. Otherwise, these types of coverage are almost identical.

Mechanical hands

The presence of mechanical hands on the dial of a smartwatch.

The specific features of gadgets with mechanical hands may be different. So, in some models, the entire dial substrate is a display; in others, the screen occupies only part of this space; and individual devices with this feature are, in fact, quartz watches, supplemented with a Bluetooth module and simple features such as an accelerometer with a pedometer, a vibration signal and additional light and/or sound indicators. However, all models with mechanical hands have two things in common. First, they are usually equipped with round dials and look very similar to traditional wristwatches; this moment is especially appreciated by fans of the classical style. Secondly, this design allows you to determine the current time (and in some models — to receive other information, for example, the date), without turning on the display and without wasting extra energy; for wrist devices that do not differ in capacious batteries, this is especially important.


Bezel-less are displays in which the case or bezel does not occupy the usable area of the front panel, or it is minimized. In terms of design, bezels have both pros and cons. One of the most important reasons for adding substantial bezels to your screen is physical protection. The bezel-less display is very easy to scratch or damage when dropped. On the other hand, the frame takes up space on the screen, and this is one of the reasons why the frames in modern smart watches are minimized, making the gadget more compact and stylish.

CPU model

The model name of the processor (CPU) installed in the watch. Knowing this name, you can find detailed data on a particular CPU and evaluate its level and general capabilities. This is especially important due of the fact that these capabilities depend not only on the basic specs (number of cores, clock frequency), but also on specific design nuances.

CPU speed

The clock speed of the processor (CPU) installed in the gadget.

In theory, a high clock speed has a positive effect on speed and performance; however, in fact, this parameter has a purely reference and promotional value. This is due to the fact that the real capabilities of the CPU depend on a number of other points, and the overall performance of the system also depends on the properties of the rest of the hardware. In addition, manufacturers select processors in such a way that their performance is guaranteed to be sufficient, taking into account the planned specialization and functionality of the gadget. Therefore, when choosing this parameter, you can not pay much attention.

Processor cores

The number of cores in the gadget's processor.

The core is the part of the processor responsible for processing a single stream of instructions. Accordingly, multiple cores allow you to cope with multiple threads at the same time, which makes the processor multitasking and improves its performance. However, note that the presence of 2 or even 4 cores does not guarantee high computing power even for the processor itself — it often happens that an advanced dual-core chip works faster than an inexpensive quad-core one. In addition, the actual performance and speed of the system depends on many other characteristics that are not related to the processor. Therefore, the number of cores is solely for reference and marketing information, in itself it cannot be a basis for evaluating a gadget and comparing it with other models.


The amount of random access memory (RAM) installed in the gadget.

This parameter is one of the key ones for the overall performance of the system: the more RAM, the faster the device works, the easier it is to handle tasks with high hardware requirements and the wider the set of applications that the gadget is able to run. Note that a large amount of RAM can compensate for even a relatively weak CPU. At the same time, you need to remember that different operating systems (see above) have different requirements for RAM and features of its use; therefore, only models on the same software platform can be compared by this indicator.

Built-in memory

The amount of own storage provided in the design of the watch/bracelet. This memory is used for permanent storage of various information: call log, received SMS and other messages, additional applications, data on physical activity for a certain time, etc. The larger its volume, the more data can be stored in the device without the need to clean it to free up space. On the other hand, in the operation of smart watches, large volumes ( 64 GB, 32 GB, 16 GB, even 8 GB and 4 GB) are not always required, capacious drives are quite expensive, and replaceable cards installed in corresponding slot (see below).

Memory card slot

The presence of a slot for memory cards in the design of the gadget.

Such a slot allows you to expand the total amount of memory by supplementing the built-in memory (see above) with a replaceable card. And in some models, the built-in drive may not be available to the user at all (only basic firmware files are stored there), and the memory card is the only option for user storage.

The advantage of "replaceable" memory over built-in memory is that it is much cheaper in terms of gigabytes of volume; at the same time, cards are issued in different volumes, which allows you to choose the option that is optimal in terms of price and capacity. In addition, removable media can be used to exchange data with another device (smartphone, laptop, etc.) — although here note that wrist gadgets usually use miniature microSD cards, and devices like laptops use full-sized SD cards. Also note that these same microSD cards are on the market in several generations, and the compatibility of watches with a particular card needs to be specified separately.

Extra features

Built-in player. The presence of a player in the smartwatch allows you to use the gadget to listen to music. There is no need to connect to the phone for this. The songs will play directly from the watch. Therefore, these devices must necessarily have an impressive (as for a watch) amount of storage and be able to connect to headphones (for connection with headphones).

Light sensor. A sensor that monitors the brightness of ambient light. One of the most popular ways to use this feature is to auto-adjust the brightness of the display: in bright light, it increases so that the image remains visible, and at dusk it decreases, which reduces eye strain and energy consumption. In addition, other more specific features may be provided — for example, turning on the screen when pulling back the sleeve of clothing.

WiFi. A technology originally used to access the Internet via wireless access points, but more recently also used for direct communication between two devices (such a connection has several advantages over traditional Bluetooth). In wrist gadgets, the first option is most often provided, although the second is also found. However, the specific uses of Wi-Fi may be different depending on the device: accessing websites and various Internet services, remote communication with smart home systems, remote control of digital cameras and other electroni...cs, transmission of the GPS- coordinates via Internet (in children's beacons), etc.

NFC. Wireless communication technology over short distances (up to 10 cm). The methods of its application, including in wrist devices, may be different. One of the more popular options is using contactless payment (see below); however, the presence of such a function does not hurt to verify separately. Another common feature is the simplification of Bluetooth connection with a smartphone or tablet that also has NFC: instead of manual configuration, it is enough to bring one device to another — and they will automatically establish a connection, all that remains is to confirm it. Other ways of interaction may also be possible, for example, launching a “sports” application on a smartphone when bringing a fitness tracker to it. And in theory, more specific options for using NFC are also allowed — for example, as a travel pass, ID, etc. Actually, in many models of wrist gadgets, the set of these methods is limited only by installed applications.

Contactless payment. The possibility of using a wrist gadget for contactless payment. This feature is found only in models with NFC (see above); it actually turns the device into an analogue of a credit card with a chip and allows you to pay without taking the card out of your wallet — just bring your hand with the gadget to the terminal reader. This provides not only additional convenience, but also security. So, bringing the watch to the terminal is definitely easier than reaching into your pocket or purse for a credit card — especially if your hands are busy shopping. And instead of a traditional card, from which an attacker can copy basic details such as a number, CVV code and expiration date (for example, by “peeping” them with the built-in camera), a gadget is used that transmits this data in encrypted form and does not display it explicitly anywhere.
To use contactless payment, usually, you need to synchronize your gadget with your smartphone and set up such payment in the Google Pay or Apple Pay system. But to make payments, a smartphone is no longer required — many wrist devices are able to perform this feature completely autonomously (although this possibility still needs to be specified separately).

Accelerometer. A sensor that determines the direction of gravity, as well as the accelerations acting on the device. This allows you to track two parameters at once: the current position in space and various physical influences (like tapping or shaking). Most often, the accelerometer is responsible for two main features: automatic rotation of the image on the screen, as well as the operation of the pedometer (in fact, the presence of such a sensor is almost guaranteed to mean the presence of a pedometer, see "Possible measurements"). However, there are other ways to use this sensor — for example, rejecting an incoming call when shaking the watch, turning on the screen when tapping on it, etc.

— Gyroscope. A device that allows you to track the turns of the gadget in one direction or another. Typically used in conjunction with an accelerometer. The gyroscope improves the accuracy of positioning in space (which has a positive effect on the quality of the pedometer and other similar functions), and also provides additional options for managing gestures. However, the specific applications of this sensor are highly dependent on the model.

— Camera. The watch/bracelet has its own built-in camera; its location and purpose differs from model to model. In some devices, the lens is located on the front panel, above the screen, and the matter is limited only to video communication and taking selfies, while others allow you to shoot “classic” photos or videos. At the same time, it is worth noting that anyway, the specs of such cameras are usually very limited — for example, the resolution rarely exceeds 2 megapixels, and autofocus is provided only in the most advanced models.

— Flashlight. Built-in flashlight — usually in the form of a small LED mounted directly in the case. Usually, it has a relatively modest brightness, but it can still be useful for simple tasks like lighting your path at night, lighting in a garage or basement, etc.

Payment system

The watch supports a certain system of contactless payment for purchases and services through the built-in NFC. See contactless payment for details.

Apple Pay. "Apple" system of contactless payments, available to owners of the Apple Watch. To use it, you bind a bank card to the device and touch the terminal with your Apple Watch at the stage of paying for purchases or services. The Apple Pay electronic wallet only works with Apple wearable technology.

Google Pay. Google Pay (formerly Android Pay) allows you to pay for purchases using NFC-chip smartwatches based on the Wear OS operating system. The device must have the Google Pay application installed, and the user will first need to have a supported card of the issuing bank.

Garmin Pay. A payment service for one-touch payments for purchases using Garmin smartwatches. To pay for goods, you must activate the e-wallet menu on your watch and enter your password from the Garmin Connect Mobile app. After that, it is enough to touch the terminal with your watch at the checkout. In the future, you can make payments without additional entering a password within 24 hours. If you remove your watch from your wrist or turn off the heart rate monitor, you will need to re-enter your password before making a payment.

...href="/list/745/pr-47352/">Samsung Pay. Contactless payment service for purchases and services for smart watches of the Samsung Gear Watch and Galaxy Watch families. The system is notable for the fact that the Magnetic Secure Transmission (MST) technology introduced by Samsung specialists makes it possible to pay even in terminals without support for contactless payments. Some watches of the South Korean brand can create a magnetic field that imitates a strip of a bank card and transmit information to outdated payment terminals.

Device charging

The method of charging the battery provided in the gadget.

MicroUSB. Charging via standard microUSB port. The main advantage of this option is the ability to charge from any microUSB cable or charger with such a connector, not necessarily original. On the other hand, the plug itself, by the standards of wrist devices, is quite large and can significantly affect the dimensions.

Proprietary cable. Charging via a cable that connects to the watch using the original proprietary interface. The other end of the cable, usually, has a standard interface — most often USB, which allows you to use any computer port or network adapter with such a connector for charging. These connectors can be smaller than microUSB, and fit into the layout of the watch better; however, it is usually necessary to use only original accessories for charging.

Original cradle. A stand for a gadget that simultaneously plays the role of a charger — usually, with a proprietary connector (see above). The cradle looks more neat than the cable, the device is fixed quite securely in it. However, such accessories are noticeably more expensive, and besides, they are intended mainly for permanent residence in one place (for example, on a night stand) and are poorly suited for travel.

Built-in connector. Charging through its own plu...g, with which the watch is connected to an external device. Most often we are talking about a USB connector, most models with this feature belong to fitness trackers (see "Type"), and the connection can also be used to transfer the collected data.

Wireless. The main advantage of wireless charging technologies is the absence of any connectors — which is important, given the miniature size of wrist gadgets. At the same time, this method takes more time and significantly affects the cost of the device. Note that wireless charging is not necessarily contactless: the charger can take the form of a stand on which you need to put your watch, a magnet attached to the back cover of the gadget, etc.

Source of power

The type of battery that is installed in the watch/bracelet.

— Li-Ion (lithium-ion). Battery of the original format, made using Li-Ion technology. Such batteries combine compact dimensions with good capacity, they are unpretentious in use, durable and reliable, and among the significant drawbacks, one can only note some sensitivity to low temperatures. As a result, this technology is one of the most popular in modern portable electronics, including wearable accessories.

— Li-Pol (lithium polymer). An updated and improved version of Li-Ion technology (see above). With the same basic advantages, lithium-polymer cells have even greater capacity with the same small dimensions and weight, they hold voltage more stable as they are discharged and are more resistant to low temperatures. At the same time, these batteries are somewhat more expensive.

— Battery. Powered by a replaceable battery — usually a compact "tablet" of one type or another. Such batteries have a relatively low capacity and are usually made disposable, that is, they cannot be recharged. Therefore, such power is found mainly among two categories of devices: in fitness trackers without a display, as well as watches of a classic design with a minimum of smart features that do not require a lot of energy.

Battery capacity

The capacity of the battery that is installed in the gadget.

Theoretically, the higher the capacity, the longer the battery can work on a single charge. However, in fact, the battery life of the gadget also depends on its power consumption, and it is determined by the specs of the display and the hardware. Therefore, only models of the same type with very similar specs can be compared in terms of battery capacity; and for an accurate assessment of battery life, it is better to focus on the directly claimed operating time in one mode or another (see below).

It is also worth mentioning that high-capacity batteries inevitably turn out to be quite heavy and bulky. So the capacity of batteries installed in wrist gadgets is also greatly limited by size and weight.

Operating time (normal mode)

The time that the gadget is able to work on one charge of the stock battery (or an interchangeable battery) in normal use.

The normal mode, usually, means work with a relatively low load. The display at this time can show some data, basic features can also work (counting steps, periodically checking the pulse, etc.), but anyway, the power consumption is low. Therefore, the operating time in normal mode can be quite impressive, up to several weeks, or even months. However, when choosing, it's ok to also pay attention to the claimed time in active mode (see below) — especially if a long operating time is a key importance, or if you plan to use the gadget intensively. The actual battery life of the device, most likely, will be somewhere in the middle between these two values, depending on the actual load. If only the time in normal mode is indicated for the gadget, you should make your decision with a certain margin.

Operating time (active mode)

The time that the gadget is able to work on one charge of the battery in the active mode of use.

For watch-phones (see “Type”), this usually means a talk mode, for other gadgets, an intensive work mode when numerous features and sensors are used and there is a constant exchange of data with a smartphone/tablet. However, the specific understanding of the "active mode" for different manufacturers may vary: some indicate the time at maximum performance (that is, in fact, guaranteed battery life), others — in some kind of "average mode". However, anyway, this is a fairly clear parameter that describes the battery life of a particular model quite well (and is much closer to real indicators than the time in normal mode mentioned above).

Note that for models with a GPS sensor (see "Navigation"), the specifications may additionally specify the time of active operation using such a sensor. See "Operating time (GPS)" for details.

Battery life (GPS)

The time that the gadget is able to work on one charge of the battery (or supplied battery) when using a GPS sensor.

This parameter is specified mainly for high-end tourist watches designed for experienced travelers, military, rescuers, divers, pilots, etc. Such devices use advanced GPS receivers, which themselves can consume quite a significant amount of energy; in addition, the operation of the receiver is inevitably accompanied by the use of other features — transferring navigation data to another device (usually via Bluetooth), working with its own built-in maps, etc. Therefore, the battery life while using GPS turns out to be rather modest — it can be significantly less time in active and even less in normal mode (for both, see above).

We also remind that the battery life mentioned in specs is approximate — in fact it may differ (in one direction or another, depending on the use scenario). Nevertheless, it is quite possible to evaluate the actual capabilities of the watch and compare them with each other: the difference in the claimed battery life usually proportionally corresponds to the difference in practical battery life.

Solar battery

A watch with a special photocell that converts the energy of sunlight into electrical energy. Sunlight also commonly refers to artificial lighting emitted by fluorescent lamps and other light sources. The solar battery can't free you from charging the smartwatch, however, it significantly extends the operating time of the wearable gadget.


The material from which the body of the gadget is made. Some models are available in several versions, made of different materials — for example, aluminium or steel; for such cases, all available options are indicated in the specs at once.

Plastic. Plastic is often considered a low-cost option, but this is not true in the case of wrist gadgets: such devices can use different types of plastic, including very advanced, durable and reliable ones. So the overall quality of such a case, usually, directly depends on the price category of the device. The common advantages of all types of plastic are relatively low weight, resistance to moisture, the ability to give the body any colour and shape, as well as low thermal conductivity.

Metal. Cases made of metal, for which the manufacturer, for some reason, did not specify the specific composition. However, most often in such cases we are talking about aluminium or steel, see below for more details on both. But high-end materials such as gold or titanium are rarely hidden under the modest term "metal" — they are usually indicated directly in the specifications. Anyway, in general, metal cases are somewhat stronger and more reliable than plastic ones, they also look more solid, but they are also more expensive....

— Steel. Usually, stainless steel is used for wrist gadgets. It is highly durable and reliable, does not corrode, looks stylish and neat, and is relatively inexpensive — cheaper than many aluminium alloys, not to mention titanium. One of the peculiarities of steel cases is rather heavy weight, but it can be both a disadvantage and an advantage: a massive case creates an additional feeling of reliability and solidity. It should be noted that most gadgets with steel cases have round dials and a traditional design, which is well suited even to a business style, but occasionally there are exceptions.

— Aluminium. Aluminium alloys combine high strength and low weight — much less than steel. But this material is somewhat more expensive. It is also considered well suited for bright youth gadgets, although it is occasionally used in more traditional devices.

— Rubber. A material found in some models of children's beacons and fitness trackers (see "Type"), but almost never used in other types of wrist gadgets. One of the key advantages of rubber is softness, which gives a certain degree of impact protection and makes the case as safe as possible; both are especially important for children's devices. In addition, such a case can be easily made waterproof and even completely sealed, as well as made in any colour. On the other hand, plastic has practically the same advantages (except for softness), and rubber costs a little more (although it is noticeably cheaper than metals).

— Titanium. Titanium alloys are premium materials and are rarely used, mainly in top-tier models of “extreme” gadgets. This material is light and at the same time extremely durable, besides it perfectly holds its shape when struck; however, titanium costs much more than the same aluminium, despite the fact that high reliability is not so often decisive.

— Gold. Gold or gold-plated case turns the gadget into a stylish fashion accessory. Such a case is very expensive, but this cannot be called a disadvantage: the price of the device emphasizes the status of the owner.

— Ceramics. Special high-strength ceramics is another premium material that not only performs a practical function, but also demonstrates the high level of the gadget and the solidity of its owner. On the practical side, in addition to strength and reliability, this material has extremely high scratch resistance, which allows it to retain its looks for a very long time even in not very favorable conditions. At the same time, ceramics do not tolerate strong point impacts.


Swivel ring around the round dial of the smart watch. It exists for a decorative and protective purpose, and in many models it has additional markings and provides a number of special control options. By rotating the bezel, you can navigate through the menu of the smart watch, and it also simplifies interaction with the touch screen of the wearable device. On the bezel, special marks are often applied for the operation of the watch dial in the timer or stopwatch mode. The specific implementation of the features assigned to the ring depends on the specific model of smartwatch.

— Metallic. The metal bezel has high mechanical strength. Usually it is made of stainless steel.

— Plastic. A low cost version of the bezel, which is found in smart watch models with plastic cases.


Body colours in which the gadget is available. Note that in this case "stainless steel" is only the name of the shade, the body material itself may be different (for example, aluminium).

Strap colours

The colour of the strap that the gadget comes with. If several options are indicated in this paragraph, this, usually, means that the user can pick the colour of his choice. Other options may be envisaged — for example, the presence of several straps in the kit, or the possibility of such a set at the request of the user — but they are much less common.

Strap Options

Skin. Leather straps are typical for a business style, they look rich and respectable, however, they are quite expensive. On the practical side, this material is strong, reliable and resistant to moisture; at the same time, it is quite demanding to care for, and if the appropriate rules are not followed, cracks may appear on the strap.

Rubber/silicone. Quite a popular material used not only for fitness trackers, but also for traditional watches. Rubber straps do not look as rich as leather ones, but they are also quite decent, while they are strong enough, durable, resistant to moisture and pleasantly felt on the hand. Silicone is similar in properties, which in appearance is practically indistinguishable from rubber. But the silicone is softer, does not pinch the hand and is more pleasant to the touch.

Metal. Metal straps (bracelets) are mainly made of stainless steel, but there are other options. Anyway, bracelets are highly durable and can be both light and massive, depending on the composition of the metal. It is also worth mentioning the high thermal conductivity of this material. Such a bracelet pleasantly cools the hand in the warm season, but causes the opposite effect in the cold.

Milanese bracelet. Metal bracelets made of links of very fine weaving (about 1 mm in size, or even less). The m...aterial of such a bracelet may be different; most often it is steel, but more expensive metals are also found. Anyway, such a bracelet has an original appearance, and also provides good air access, allowing the skin to breathe. Among the shortcomings of Milanese bracelet, it can be noted that the links can “bite” the hair on the arm, creating discomfort.

— Textile. Usually, strong dense fabric (like nylon-based CORDURA) is used for straps, resistant to moisture, ultraviolet and other adverse factors. For some users, this material is more pleasant than other options; however, for a number of technical reasons, fabric straps were not widely used.

Many models of wrist gadgets are available with several strap options to choose from.

Straps included

Package with watch can have not one, but several straps(from 2 to 4 pcs) additionally. Usually they differ in material and, accordingly, style. This allows you to change the appearance of device.

Clasp options

The type of clasp used on a gadget's strap or bracelet.

The most common types of clasps today are the classic buckle, folding clip, folding lock, magnet, snap fastener, and Velcro. If several options are indicated in the specs at once, it means that the gadget is supplied or can be supplied with different strap options using different types of fasteners. Here is a detailed description of each type:

– Classic (with buckle). Clasp resembling a belt buckle; originally used in traditional wristwatches, but nowadays it has become widespread in smart gadgets. On one half of such a fastener there is a U-shaped or similar frame with a special pin, on the second — a row of holes. When fastening, the second half is threaded through the frame, and the pin is fixed in one of the holes. At the same time, by choosing a particular hole, you can adjust the size of the strap. In addition, the advantages of the classics are reliability, neat appearance and compatibility with many strap materials (with the exception of metal bracelets).

— Clip (unfolding). An option for metal bracelets. The most widespread type of clip, consisting of two curved plates connected by an axis. When unfastened, they open like a book, increasing the overall length of the bracelet and allowing you to easily remove t...he watch from your hand, and when fastened, they fold close to each other and are fixed, securing the bracelet on your wrist. Another, less popular variety is the “butterfly”, which has two flaps that, when opened, rise like wings. In general, the clips are very easy to use, but difficult to set up. They fasten and unfasten with literally one click, but it’s impossible to reconfigure the size of a bracelet with a clip “on the go” — you have to disconnect and reconnect special latches, which requires an additional tool and some skill.

— Magnetic. A fastener in which a strong permanent magnet plays the role of a latch. Such devices are simple and convenient both in use and in adjustment: for fastening and unfastening, it is enough to “stick” or “unstick” a magnet, and size adjustment is carried out right at the time of fastening — by tightening the strap to the desired length. The main disadvantage of such a clasp is that it can only be used with metal bracelets made of magnetic alloys — for example, steel.

— With lock. A clasp that resembles the buckle described above, but has a slightly different principle of operation. On one side of the strap with such a clasp there is a latch pin, on the other side there is a loop of a D-shaped or other shape, as well as a number of holes. When fastening, the side with the pin is threaded into the loop and then fixed in one of the holes; By choosing one or another hole, you can adjust the length of the strap. This design is especially suitable for rubber straps, it is simpler and at the same time more reliable than the buckle, which can also be used with such straps.

— Velcro. Classic velcro closure, used exclusively with fabric straps. Like magnetic clasps (see above), such clasps allow you to very accurately adjust the length of the strap right in the process of fastening. Among the disadvantages of Velcro, in addition to restrictions on the materials of the strap, it is worth noting the tendency to reduce reliability as it wears out. Therefore, nowadays, this type of fastener is quite rare, and is almost never used as the only one available — usually Velcro is supplemented with another option, for example, a latch.

— Folding lock. Clasp in the form of a detachable lock, the halves of which are on different halves of the bracelet. It is used with finely woven metal bracelets, the so-called "Milanese" ones; at the same time, one half is fixed motionless, and the second can move along its part of the bracelet — in this way the length is adjusted. A tool may be required for adjustment, but the procedure itself is simple — much easier than with clips. And the low prevalence of folding locks is mainly due to the fact that Milanese bracelets are rarely found in smart wrist gadgets.

Detachable strap

The ability to remove the stock gadget strap and replace it with another one of your own free will. At the same time, the replacement options may vary in different models: for example, some smart watches and watch phones (see "Type") are even compatible with straps from ordinary watches, but fitness trackers, usually, are designed only for original accessories .

Anyway, replacing the strap allows you to change both the appearance of the gadget and the feeling of wearing it (after all, different materials feel differently on the hand).

Quick release strap

The presence of a quick-release strap in the design of the gadget.

Different straps not only look, but often feel different; so the replacement of the strap itself allows you to further customize the gadget to the user's preferences. Quick-release straps and bracelets can be put on and taken off without the use of special tools. For this purpose, appropriate fastenings are provided in the design.

This ease of replacement entails a number of other advantages. For example, when buying an additional strap, you can immediately try several options in fact and decide which one fits and feels best. And if the gadget is used in different situations, you can have several straps for each occasion: for example, strict black for working hours and bright orange for the weekend. On the other hand, when looking for quick-release bracelets, you should pay special attention to compatibility.

Long (double) strap

The presence of a long or double strap supplied with the gadget.

A long strap is a strap that wraps around the wrist twice when put on; and the double strap has the appearance of two parallel strips of material, each with its own clasp. The meaning of this feature is mainly aesthetic: it has almost no practical functions, but it gives the gadget an unusual appearance.

Band Width

The width of the stock watch strap or bracelet is implied. Usually, in each specific model taken, this value is limited by the size of the standard lugs. A wider strap than the lugs allow cannot be installed. But the strap of a smaller width is quite possible to use. Of course, you need to take into account that an overly thin strap with a large diameter watch will not look quite harmonious. Most often, the width of the strap is directly related to the diameter of the dial. As a standard, the width is calculated using the formula: ½ x D, where D is the diameter of the dial. That is, if the dial diameter is 40 mm, then the perfect strap width in this case is 20 mm.

Wrist strap

Wrist coverage suitable for the included watch strap. Usually, the length of the strap can be adjusted, so this paragraph usually indicates not one number, but a range — for example, "130 – 200" (millimetres). If there are several straps in the kit, then several ranges are indicated in the specs, if necessary, with a clarification like “fabric: 115 – 185, metal: 130 – 220” (if the straps are made of different materials).

We emphasize that in this case we are talking not just about the length of the strap, but about the girth of the wrist, for which it is designed. Thus, by measuring your hand in an appropriate way, you can accurately determine whether a particular strap is suitable for a particular person or not. This possibility is especially important if the watch is bought for a user with a non-standard hand size — miniature or, conversely, very large.

Waterproof WR

The degree of protection against water according to the WR standard, which corresponds to the body of the gadget.

WR (Water Resistant) is a rather specific standard that was originally used in traditional wristwatches. It describes the static water pressure that the device can tolerate without consequences: for example, WR30M corresponds to a pressure at a depth of 30 m (i.e. 3 bar). However, the physical features of such measurements are such that this figure corresponds very poorly to the actual allowable immersion depth. For example, the mentioned WR30M level only provides protection against accidental splashes, while the WR50M allows you to endure maximum exposure to rain or running water when washing your hands. The lowest level that allows complete immersion under water is WR100M, but only to a minimum depth and without “extreme” like surfing or diving from a tower. And for more serious activities, like water sports or diving, you should pay attention to gadgets with water protection at the level of WR200M, and even WR300M.

Dustproof & waterproof

The level of dust and moisture protection according to the IP standard, which the gadget corresponds to.

This parameter is usually denoted by the letters IP followed by two characters ( IP55, IP56, IP57, IP65, IP66, IP67, IP68) — for example, IP68. The numbers indicate the specific degree of protection: the first — from foreign objects and dust, the second — from water. Instead of one of the numbers, there may be the letter X ( IPX5, IPX7, IPX8) — this means that certification for this indicator has not been carried out: for example, an IPX7 device has a moisture resistance of 7, but has not been tested for dust protection. However, a high degree of protection against water automatically means good dust resistance.

Here are the levels of dust protection (first digit) found in modern wrist gadgets:

5 — dust resistance. Some dust may get inside, but it does not affect the operation of the device. There is no point in specifying lower levels, as they do not provide protection against dust.
6 — dust tightness (dust ingress is completely excluded).

The second digit describes the resistance to moisture,...here the options can be as follows:

4 — resistance to water splashes from any direction. It is considered the minimum level of moisture protection, which makes sense to indicate in the characteristics: in particular, it allows you to endure exposure to rain without consequences.
5 — resistance to water jets from any direction. This level allows you to endure heavy rain and makes it possible to at least calmly wash your hands without removing the gadget.
6 — protection against strong water jets and impacts of sea waves. It is undesirable to completely submerge such a gadget under water, but it can be used even in a strong storm and not removed during the shower.
7 — the possibility of short-term immersion under water to a shallow depth (up to 1 m), without constant operation in immersed mode. With such a device, usually, you can even swim — but for a very short time (several minutes) and without diving. However, it is worth noting that not every gadget with this level of protection normally tolerates water jets (that is, compliance with level 7 does not necessarily mean compliance with lower levels 5 and 6).
8 — the possibility of a long (more than 30 minutes) stay under water at a great depth (more than 1 m), using in submerged mode. The specific limit of depth and time may be different, it should be specified separately; there are both gadgets with basic capabilities that allow you to dive a couple of metres, and diving models with an allowable depth of several tens of metres. Similar to level 7, water jet resistance is not guaranteed in this case.


Initially , MIL-STD-810 is a set of specifications that establishes certain levels of protection for electrical equipment from environmental factors. The standard was developed for testing military equipment for the US Army in order to maintain performance in various adverse conditions. It imposes quite stringent requirements on the test subjects: the level of product resistance to impacts during drops and shakes is checked, vibration tests are carried out, the device is tested in a wide temperature range, in rain, in fog, under the influence of sand, dust, etc. However, the MIL-STD-810 label in "civilian" products does not always mean the highest degree of protection. This is due to the lack of strict regulation of the tests. So, the most ingenious vendors test the gadgets literally on one or two points of the extensive list and often deliberately do not cover which tests were passed. Accordingly, the specific features of such protection remain reliably unknown. The standard has been recognized since 1962. Each new version is indicated by a letter of the Latin alphabet at the end. The further the letter down the alphabet, the more recent the version of the certificate. Since 2008, the MIL-STD-810G specification was the latest, and in 2019 a new edition of the MIL-STD-810H standard was approved.


In most cases, the weight of the watch body itself is indicated as the weight of the model, since the strap is removable and can be replaced with another one. However, there are also models when the weight is presented with an included strap. Anyway, if the manufacturer indicates a specific method of measuring weight (with or without a strap), we add this information.
Hull shape
Extra Features
Sports and sensors
Parental control
Calls and notifications
Watch face protection
Strap material
Ingress Protection (IP)
Waterproof (WR)
Release year
Advanced filters
Catalog smartwatches 2022 - new products, best sales, buy smartwatches & Trackers.