Interface
An interface that connects a graphics card to a computer's motherboard.
In fact, the standard interface for modern video cards is PCI-E (PCI-Express of various versions: PCI-E v2.0,
PCI-E v3.0,
PCI-E v4.0); nowadays, it has almost completely replaced the obsolete AGP and the "regular" PCI. Modern components may provide different versions and a different number of PCI-E lanes; for video cards, the rules for compatibility with motherboards are as follows:
1. The number of PCI-E lines in the motherboard slot must not be less than the number of graphics card lines. That is, for example, a video adapter with PCI-E x8 can be connected to a PCI-E x16 slot, but not vice versa. In general, when choosing components, it is most reasonable to proceed from the fact that you need an x16 slot for connection: this is the maximum number of lines found in motherboard slots, and this is exactly the number provided in most modern video cards, otherwise it would be impossible to achieve the required throughput.
2. An older PCI-E graphics card can be connected to a later version slot, but the opposite option is most often impossible (with rare exceptions, PCI-E v2.1 video adapters can work on some cards with v2.0 slots, but this opportunity is worth specify separately).
As for specific versions of PCI-E, here the options can be as follows:
— PCI-E v2.0. The earliest of the current PCI
...-Express versions. The throughput of one line of this interface is 5 GT / s (gigatransactions per second), which in fact gives 500 MB / s per line. Accordingly, the maximum data transfer rate (with 16 lines) reaches 8 GB / s in each direction.
— PCI-E v2.1. An improved version of version 2.0, featuring some software improvements; in terms of hardware and throughput, it is completely identical to its predecessor.
— PCI-E v3.0. A fundamental update of the PCI-E standard, which introduced a more advanced data encoding scheme — 128b / 130b, that is, 2 “extra” bits for every 128 bits of useful information (whereas 8b / 10b was used in earlier standards, that is, 2 service bit to 8 basic). Thanks to this, compared with its predecessor, the data transfer rate was almost doubled (to 985 MB / s per line), while the number of transactions increased from only 5 to 8 GT / s.
— PCI-E v4.0. Further development of the PCI-E standard described above, released to the market in 2019. Throughput compared to the previous version 3.0 was increased by another 2 times — up to 16 gigatransactions per second (1969 MB / s per line, 31.5 GB / s for x16).GPU model
A GPU is a type of graphics processor that determines the fundamental performance characteristics of a video adapter. Today there are two main manufacturers -
AMD and
NVIDIA. Intel has also entered the leadership race with its
Intel Arc line of discrete graphics.
NVIDIA:
GeForce GT 1030,
GeForce GTX 1050 Ti,
GeForce GTX 1060,
GeForce GTX 1070, etc. (all related to
GeForce 10 series),
GeForce GTX 1630,
GeForce GTX 1650(
SUPER),
GeForce GTX 1660(
SUPER,
Ti),
GeForce RTX 20 series, namely
GeForce RTX 2060(
SUPER),
GeForce RTX 2070(
SUPER),
GeForce RTX 2080(
SUPER,
Ti),
GeForce RTX 3050,
GeForce RTX 3060,
GeForce RTX 3060 Ti,
..."/list/189/pr-42256/">GeForce RTX 3070,
GeForce RTX 3070 Ti,
GeForce RTX 3080,
GeForce RTX 3080 Ti,
GeForce RTX 3090, GeForce
RTX 3090 Ti,
GeForce RTX 4060,
GeForce RTX 4060 Ti,
GeForce RTX 4070,
GeForce RTX 4070 SUPER,
GeForce RTX 4070 Ti,
GeForce RTX 4 070 Ti SUPER,
GeForce RTX 4080,
GeForce RTX 4080 SUPER,
GeForce RTX 4090, as well as professional
Quadro.
AMD:
Radeon RX 400 series,
Radeon RX 500 series as
Radeon RX 550,
Radeon RX 560, Radeon RX
570, Radeon RX 580,
Radeon RX 590, Radeon RX 5500
XT,
Radeon RX 5600 XT,
Radeon RX 5700,
Radeon RX 5700 XT,
Radeon RX 6400,
Radeon RX 6500 XT, Radeon RX 6600,
Radeon RX 6600 XT, Radeon RX 6650 XT,
Radeon RX 6700 XT, Radeon
RX 6750 XT , Radeon RX 6800,
Radeon RX 6800 XT,
Radeon RX 6900 XT,
Radeon RX 6950 XT,
Radeon RX 7600,
Radeon RX 7600 XT, Radeon RX 7700 XT, Radeon RX 7800 XT,
Radeon RX 7900 XT,
Radeon RX 7900 XTX,
Radeon RX 7900 GRE,
Radeon RX Vega 56,
Radeon RX Vega 64,
AMD Radeon VII and professional
FirePro.
Knowing the GPU model, you can find detailed information on it (special specs, reviews, reviews, etc.) and evaluate how suitable this board is for your purposes. It is worth noting that in video cards from third-party brands, the characteristics of the graphics processor may differ slightly from the standard ones (and often in the direction of acceleration and improvement).
Architecture
A set of properties and qualities inherent in a whole family of video cards.
The GPU architecture is designed for massively parallel computing to efficiently handle computer graphics processing.
Modern video cards are built according to one of several common architectures:
Turing. The NVIDIA Turing architecture debuted towards the end of 2018. It is named after the English mathematician Alan Turing. Turing has pioneered ray tracing RT cores that accelerate light and sound motion calculations in a 3D environment by up to 10 billion rays per second. Also, the architecture is equipped with tensor cores, a new multi-threaded processor and a unified cache architecture with double the bandwidth (compared to previous generations). Used by Turing in GeForce RTX, Quadro RTX and Tesla T4 graphics cards.
Ampere. The second generation RTX architecture that replaced Turing in 2020. It is named after the French physicist and mathematician André-Marie Ampère. The architecture marked the rise of the NVIDIA GeForce RTX 3000 series gaming graphics cards. Ampere introduced new streaming multiprocessors, second edition RT cores, and third generation tensor cores. The key point of these improvements is not only an increase in raster performance, but also a reduction in the load when calculating rays. The Ampere architecture is found in the GeForce 30 family of
...GPUs from NVIDIA.
Ada Lovelace. Launched in 2021, the Ada Lovelace family of GPUs features new 3G RT cores that provide 2x performance gains with ray tracing. The architecture also uses fourth-generation tensor cores, which are up to two times faster in AI training operations, and CUDA cores, which are twice as productive in single-precision operations compared to previous generation solutions. The architecture is implemented in NVIDIA GeForce 4000 and 6000 series video cards.
Navi (RDNA). The first graphics solutions from AMD based on the Navi RDNA architecture were released in the summer of 2019. Having half the area of the chip, it managed to accommodate the same 12.5 billion transistors as in the previous generation of chips on Vega 10. Video cards based on the Navi architecture (RDNA) video cards have increased energy efficiency and performance, especially in games. The debut of the architecture took place in the graphics cards of the Radeon RX 5700 line.
Big Navi (RDNA 2). Big Navi Architecture (RDNA 2) has been on the move since 2020. She got improved computing units, an improved graphics pipeline and a new high-speed cache memory AMD Infinity Cache. The architecture demonstrates high levels of energy efficiency and performance. In particular, compared with the first edition of RDNA, the increase in performance per watt was up to 54%. Also, Big Navi has improved hardware devices for ray tracing (Ray Accelerator), which provides more realistic rendering of graphics in demanding games. The architecture is used in AMD Radeon RX 6000 series video cards and top gaming consoles (Sony PlayStation 5, Xbox S/X).
Navi 3X (RDNA 3). Changes in the third edition of the RDNA architecture are aimed at comprehensively improving gaming performance at high resolutions of 4K and 8K. RDNA 3-based GPUs are the first multi-chip GPUs from AMD. Redesigned compute units and second-generation AMD Infinity Cache technology deliver up to a 54% performance boost when compared to the previous generation Big Navi Navi 3X. There are also improvements in ray tracing performance - the corresponding blocks can count on 50% more rays per clock. The architecture has found application in gaming video cards of the AMD Radeon RX 7000 family.GPU clock speed
The frequency of the graphics processor of the graphics card. As a general rule, the higher the frequency of the GPU, the higher the performance of the graphics card, but this parameter is not the only one — a lot also depends on the design features of the graphics card, in particular, the type and amount of video memory (see the relevant glossary items). As a result, it is not unusual for a model with a lower processor frequency to be more performant of two video cards. In addition, it should be noted that high-frequency processors also have high heat dissipation, which requires the use of powerful cooling systems.
Lithography
The process technology by which the graphics card's own processor is made.
This parameter is specified by the size of each individual transistor used in the processor. At the same time, the smaller this size, the more perfect the technical process is considered: reducing individual elements allows you to reduce heat dissipation, reduce the overall size of the processor, and at the same time increase its performance. Accordingly, nowadays, manufacturers are trying to move in the direction of reducing the technical process, and the newer the graphics card, the smaller the numbers in this paragraph can be.
Passmark G3D Mark
The result shown by the graphics card in the test (benchmark) Passmark G3D Mark.
Benchmarks allow you to evaluate the actual capabilities (primarily overall performance) of a graphics card. This is especially convenient in light of the fact that adapters with similar characteristics in fact can differ markedly in capabilities (for example, due to the difference in the quality of optimization of individual components for joint work). And Passmark G3D Mark is the most popular benchmark for graphics adapters nowadays. The results of such a test are indicated in points, with a higher number of points corresponding to better performance. As of mid-2020, the most advanced graphics cards can score over 17,000 points.
Note that Passmark G3D Mark is used not only for general performance evaluation, but also to determine the compatibility of a graphics card with a specific processor. The CPU and graphics adapter must be approximately equal in terms of the overall level of computing power, otherwise one component will “pull back” the other: for example, a weak processor will not allow a powerful gaming graphics card to unleash the full potential. To search for a video adapter for a specific CPU model, you can use the list "Optimal for AMD processors" or "Optimal for Intel processors" in the selection of our catalog.
USB C
The number of USB Type C outputs provided in the graphics card.
Note that USB Type C is only a type of physical connector; specific methods of its application may be different, they should be clarified separately. However, most video cards with this feature have VR support (see below), and this connector is used in them just to connect virtual reality glasses and helmets. Another use case is somewhat less common — connecting monitors via the Thunderbolt v3 interface: this version uses a Type C hardware connector. In both cases, there is usually only one output of this type — this is quite enough.
DirectX
The latest version of DirectX supported by the graphics card.
DirectX is a set of software tools for Windows OS that provides interaction between programs and hardware components of the system, including graphics card. In fact, the existence of DirectX eliminates the need for developers to write versions of programs for each specific system configuration: if the programme is compatible with DirectX, it will work correctly on any system with DirectX of the corresponding version (or later) installed.
The later version of DirectX a graphics card can support, the wider its capabilities in general. This is especially true for processing complex graphics and special effects, in particular in games. At the same time, a game optimized for a later version of DirectX may well run with an earlier version, but the full set of video effects will not be available to the user.
Today, the newest version is
DirectX 12, it is supported by most modern video cards. At the same time, we note that this version is also compatible with graphics adapters originally designed for Direct X 11 — except that not all functions will be available in such cases.
Additional power
Format of additional power required for the operation of the graphics card.
By itself, the PCI-E connector, which is standardly used to connect video cards, provides 75 watts of power. For many models, even quite performant ones, this is quite enough, and many modern video adapters do
without additional power. However, models
with additional power have become more widespread, especially among high-end solutions.
The simplest version of such a power supply is one
6-pin or
8-pin connector. A 6-pin connector can additionally provide up to 75 watts, an 8-pin connector can provide up to 150 watts. However, for high-end solutions, one connector is not enough, so there are models with
6 + 8 pin,
8 + 8 pin, and even
8 + 8 + 6 pin or
8 + 8 + 8 pin formats.And the new cards are completely
16-pin. Such power connectors have a total of 16 lines: 12 for current supply and 4 signal. The effective power threshold of the 16 pin connector is up to 600 watts. Connection to it can be done through a 3×8 pin adapter.
Note that it is theoretically possible to connect a 6-pin power supply to an 8-pin connector and vice versa, even corresponding adapters are availa
...ble for this. However, in fact, the possibility of such a connection should be clarified separately, and such tricks should be used only in extreme cases, when other options are not available.