USA
Catalog   /   Computing   /   Components   /   CPUs

Comparison Intel Core i9 Raptor Lake i9-13900K BOX vs Intel Core i9 Cascade Lake-X i9-10980XE BOX

Add to comparison
Intel Core i9 Raptor Lake i9-13900K BOX
Intel Core i9 Cascade Lake-X i9-10980XE BOX
Intel Core i9 Raptor Lake i9-13900K BOXIntel Core i9 Cascade Lake-X i9-10980XE BOX
Compare prices 11Compare prices 2
TOP sellers
Main
72 lanes PCI Express 3.0 (together with the chipset)
SeriesCore i9Core i9
Code nameRaptor LakeCascade Lake-X
SocketIntel LGA 1700Intel LGA 2066
Lithography10 nm14 nm
In boxBOX (no cooler)BOX (no cooler)
Cores and Threads
Cores24 cores18 cores
Performance8 cores
Efficient16 cores
Threads32 threads36 threads
Multithreading
Speed
Clock speed3 GHz
Performance-core Base3 GHz
Efficient-core Base2.2 GHz
TurboBoost / TurboCore
5.8 GHz /one core/
4.6 GHz /3.8 all cores/
TurboBoost Max 3.05.7 GHz4.7 GHz
Performance-core Max5.4 GHz
Efficient-core Max4.3 GHz
Cache
L3 cache36 MB24.75 MB
Specs
IGPUHD Graphics 770is absent
TDP125 W165 W
Thermal Dissipation Max(TDP)253 W
InstructionSSE4.1, SSE4.2, AVX2
MMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AES, AVX, AVX2 /AVX512 VNNI, BMI, BMI1, BMI2, F16C, FMA3, EM64T, NX, XD, VT-x, VT-d, HT, TBT 2.0/3.0/
Multiplier30
Free multiplier
PCI Express5.0
Max. operating temperature100 °С
Passmark CPU Mark60031 score(s)34264 score(s)
Geekbench 464192 score(s)
Cinebench R153800 score(s)
Memory
Max. RAM128 GB256 GB
Max. DDR4 speed3200 MHz2933 MHz
Max. DDR5 speed5600 MHz
Channels24
Added to E-Catalogseptember 2022october 2019

Code name

This parameter characterizes, firstly, the technical process (see above), and secondly, some features of the internal structure of processors. A new (or at least updated) codename is introduced to the market with each new CPU generation; chips of the same architecture are "coevals", but may belong to different series (see above). At the same time, one generation can include both one and several code names.

Here are the most common Intel codenames today: Cascade Lake-X (10th gen), Comet Lake (10th gen), Comet Lake Refresh (10th generation), Rocket Lake (11th generation), Alder Lake (12th generation), Raptor Lake (13th generation), Raptor Lake Refresh (14th generation).

For AMD, this list includes Zen+ Picasso, Zen2 Matisse, Zen2 Renoir, Zen3 Vermeer, Zen3 Cezanne, Zen4 Raphael and Zen4 Phoenix.

Socket

The type of connector (socket) for installing the processor on the motherboard. For normal compatibility, it is necessary that the CPU and motherboard match the socket type; before buying one and the other, this point should be clarified separately

The following sockets are relevant for Intel processors today: 1150, 1155, 1356, 2011, 2011 v3, 2066, 1151, 1151 v2, 3647, 1200 and 1700.

In turn, AMD processors are equipped with the following types of connectors: <AM3/AM3+, FM2/FM2+, AM4, AM5, TR4/TRX4, WRX8.

Lithography

The technical process by which the CPU is manufactured.

The parameter is usually specified by the size of the individual semiconductor elements (transistors) that make up the processor integrated circuit. The smaller their size, the more advanced the technical process is considered: miniaturization of individual elements allows you to reduce heat generation, reduce the overall size of the processor and at the same time increase its flow Rate. CPU manufacturers are trying to move towards reducing the technical process, and the newer the processor, the lower the numbers you can see at this point.

The technical process is measured in nanometers (nm). In the modern arena of central processors, solutions made using the 7 nm, 10 nm, 12 nm process technology predominate, high-end CPU models are manufactured using the 4 nm and 5 nm process technology, 14 nm and 22 nm solutions are still afloat, and are rapidly fading into the background, but 28 nm and 32 nm occur periodically.

Cores

The number of physical cores provided in the processor design. The core is the part of the processor that is responsible for executing the instruction stream. The presence of multiple cores allows the CPU to work simultaneously with several tasks, which has a positive effect on performance. Initially, each physical core was intended to operate with one thread of commands, and the number of threads corresponded to the number of cores. However, today there are many processors that support multi-threading technologies and are capable of executing two streams of commands on each core at once. For more information about this, see “Amount of threads”.

Desktop processors have 2 cores (2 threads), as a rule, typical for budget models. 2 cores (4 threads) and 4 cores are typical for inexpensive mid-class solutions. 4 cores (8 threads), 6 cores, 6 cores (12 threads), 8 cores - a strong mid-range. 8 cores (16 threads), 10 cores, 12 cores, 16 cores and more are characteristic features of advanced models, including processors for servers and workstations.

At the same ti...me, it is worth considering that the actual capabilities of the CPU are determined not only by this parameter, but also by other characteristics - primarily by series and generation / architecture (see the corresponding paragraphs). It is not uncommon for situations where a more advanced and/or new dual-core processor turns out to be more powerful than a quad-core chip from a more modest series or an earlier architecture. So it makes sense to compare CPUs by the number of cores within the same series and generation.

Performance

Number of high-performance Performance Cores (or P-Cores) in Intel processors since 12th generation (Alder Lake). P-cores have support for Hyper-Threading and take on the execution of resource-intensive tasks of the first plan. Those. they are directly responsible for the performance level of the processor as a whole.

Efficient

The number of energy-efficient Efficient Cores (or E-Cores) in Intel processors since the Alder Lake generation. They are relatively small and can be added in clusters of four — on a silicon chip, such groups occupy the same area as one high-performance core. E-cores work out basic background loads.

Threads

The number of instruction streams that the processor can execute at the same time.

Initially, each physical core (see "Number of cores") was intended to execute one thread of instructions, and the number of threads corresponded to the number of cores. However, there are many processors today that support Hyper-threading or SMT (see below) and can run two threads on each core at once. In such models, the number of threads is twice the number of cores — for example, 8 threads will be indicated in a quad-core chip.

In general, a higher number of threads, other things being equal, has a positive effect on speed and efficiency, but increases the cost of the processor.

Clock speed

The number of cycles per second that the processor produces in its normal operating mode. A clock is a single electrical impulse used to process data and synchronize the processor with the rest of the computer system. Different operations may require fractions of a clock or several clocks, but anyway, the clock frequency is one of the main parameters characterizing the performance and speed of the processor — all other things being equal, a processor with a higher clock frequency will work faster and better cope with significant loads. At the same time, it should be taken into account that the actual performance of the chip is determined not only by the clock frequency, but also by a number of other characteristics — from the series and architecture (see the relevant paragraphs) to the number of cores and support for special instructions. So it makes sense to compare by clock frequency only chips with similar characteristics belonging to the same series and generation.

Performance-core Base

The base clock speed of high-performance P-cores for Intel processors on a hybrid architecture.
Intel Core i9 Raptor Lake often compared