GPU model
A GPU is a type of graphics processor that determines the fundamental performance characteristics of a video adapter. Today there are two main manufacturers -
AMD and
NVIDIA. Intel has also entered the leadership race with its
Intel Arc line of discrete graphics.
NVIDIA:
GeForce GT 1030,
GeForce GTX 1050 Ti,
GeForce GTX 1060,
GeForce GTX 1070, etc. (all related to
GeForce 10 series),
GeForce GTX 1630,
GeForce GTX 1650(
SUPER),
GeForce GTX 1660(
SUPER,
Ti),
GeForce RTX 20 series, namely
GeForce RTX 2060(
SUPER),
GeForce RTX 2070(
SUPER),
GeForce RTX 2080(
SUPER,
Ti),
GeForce RTX 3050,
GeForce RTX 3060,
GeForce RTX 3060 Ti,
..."/list/189/pr-42256/">GeForce RTX 3070,
GeForce RTX 3070 Ti,
GeForce RTX 3080,
GeForce RTX 3080 Ti,
GeForce RTX 3090, GeForce
RTX 3090 Ti,
GeForce RTX 4060,
GeForce RTX 4060 Ti,
GeForce RTX 4070,
GeForce RTX 4070 SUPER,
GeForce RTX 4070 Ti,
GeForce RTX 4 070 Ti SUPER,
GeForce RTX 4080,
GeForce RTX 4080 SUPER,
GeForce RTX 4090, as well as professional
Quadro.
AMD:
Radeon RX 400 series,
Radeon RX 500 series as
Radeon RX 550,
Radeon RX 560, Radeon RX
570, Radeon RX 580,
Radeon RX 590, Radeon RX 5500
XT,
Radeon RX 5600 XT,
Radeon RX 5700,
Radeon RX 5700 XT,
Radeon RX 6400,
Radeon RX 6500 XT, Radeon RX 6600,
Radeon RX 6600 XT, Radeon RX 6650 XT,
Radeon RX 6700 XT, Radeon
RX 6750 XT , Radeon RX 6800,
Radeon RX 6800 XT,
Radeon RX 6900 XT,
Radeon RX 6950 XT,
Radeon RX 7600,
Radeon RX 7600 XT, Radeon RX 7700 XT, Radeon RX 7800 XT,
Radeon RX 7900 XT,
Radeon RX 7900 XTX,
Radeon RX 7900 GRE,
Radeon RX Vega 56,
Radeon RX Vega 64,
AMD Radeon VII and professional
FirePro.
Knowing the GPU model, you can find detailed information on it (special specs, reviews, reviews, etc.) and evaluate how suitable this board is for your purposes. It is worth noting that in video cards from third-party brands, the characteristics of the graphics processor may differ slightly from the standard ones (and often in the direction of acceleration and improvement).
Architecture
A set of properties and qualities inherent in a whole family of video cards.
The GPU architecture is designed for massively parallel computing to efficiently handle computer graphics processing.
Modern video cards are built according to one of several common architectures:
Turing. The NVIDIA Turing architecture debuted towards the end of 2018. It is named after the English mathematician Alan Turing. Turing has pioneered ray tracing RT cores that accelerate light and sound motion calculations in a 3D environment by up to 10 billion rays per second. Also, the architecture is equipped with tensor cores, a new multi-threaded processor and a unified cache architecture with double the bandwidth (compared to previous generations). Used by Turing in GeForce RTX, Quadro RTX and Tesla T4 graphics cards.
Ampere. The second generation RTX architecture that replaced Turing in 2020. It is named after the French physicist and mathematician André-Marie Ampère. The architecture marked the rise of the NVIDIA GeForce RTX 3000 series gaming graphics cards. Ampere introduced new streaming multiprocessors, second edition RT cores, and third generation tensor cores. The key point of these improvements is not only an increase in raster performance, but also a reduction in the load when calculating rays. The Ampere architecture is found in the GeForce 30 family of
...GPUs from NVIDIA.
Ada Lovelace. Launched in 2021, the Ada Lovelace family of GPUs features new 3G RT cores that provide 2x performance gains with ray tracing. The architecture also uses fourth-generation tensor cores, which are up to two times faster in AI training operations, and CUDA cores, which are twice as productive in single-precision operations compared to previous generation solutions. The architecture is implemented in NVIDIA GeForce 4000 and 6000 series video cards.
Navi (RDNA). The first graphics solutions from AMD based on the Navi RDNA architecture were released in the summer of 2019. Having half the area of the chip, it managed to accommodate the same 12.5 billion transistors as in the previous generation of chips on Vega 10. Video cards based on the Navi architecture (RDNA) video cards have increased energy efficiency and performance, especially in games. The debut of the architecture took place in the graphics cards of the Radeon RX 5700 line.
Big Navi (RDNA 2). Big Navi Architecture (RDNA 2) has been on the move since 2020. She got improved computing units, an improved graphics pipeline and a new high-speed cache memory AMD Infinity Cache. The architecture demonstrates high levels of energy efficiency and performance. In particular, compared with the first edition of RDNA, the increase in performance per watt was up to 54%. Also, Big Navi has improved hardware devices for ray tracing (Ray Accelerator), which provides more realistic rendering of graphics in demanding games. The architecture is used in AMD Radeon RX 6000 series video cards and top gaming consoles (Sony PlayStation 5, Xbox S/X).
Navi 3X (RDNA 3). Changes in the third edition of the RDNA architecture are aimed at comprehensively improving gaming performance at high resolutions of 4K and 8K. RDNA 3-based GPUs are the first multi-chip GPUs from AMD. Redesigned compute units and second-generation AMD Infinity Cache technology deliver up to a 54% performance boost when compared to the previous generation Big Navi Navi 3X. There are also improvements in ray tracing performance - the corresponding blocks can count on 50% more rays per clock. The architecture has found application in gaming video cards of the AMD Radeon RX 7000 family.Memory bus
The amount of data (bits) that can be transferred over the graphics card's memory bus in one cycle. The performance of the graphics card directly depends on the bus width: the higher the bit width, the more data the bus transfers per unit of time and, accordingly, the video memory runs faster.
The minimum bit depth for modern video cards is actually
128 bits, this figure is typical mainly for low-cost models. In mid-level solutions, there are indicators of
192 bits and
256 bits, and in advanced models —
352 bits,
384 bits and more, up to
2048 bits.
GPU clock speed
The frequency of the graphics processor of the graphics card. As a general rule, the higher the frequency of the GPU, the higher the performance of the graphics card, but this parameter is not the only one — a lot also depends on the design features of the graphics card, in particular, the type and amount of video memory (see the relevant glossary items). As a result, it is not unusual for a model with a lower processor frequency to be more performant of two video cards. In addition, it should be noted that high-frequency processors also have high heat dissipation, which requires the use of powerful cooling systems.
Memory clock
The speed at which a video card can process data stored in its video memory. In fact, the indicator determines the maximum number of operations to receive or transmit data by a memory module per unit of time. This frequency is expressed in megahertz (MHz) – millions of operations per second. High video memory frequency helps improve performance when performing resource-intensive tasks such as texture processing, graphics rendering and other graphics operations. However, the parameter is by no means the only factor that influences the overall performance of the video card – it is important to take into account the GPU architecture, number of cores, core frequency and other characteristics.
Lithography
The process technology by which the graphics card's own processor is made.
This parameter is specified by the size of each individual transistor used in the processor. At the same time, the smaller this size, the more perfect the technical process is considered: reducing individual elements allows you to reduce heat dissipation, reduce the overall size of the processor, and at the same time increase its performance. Accordingly, nowadays, manufacturers are trying to move in the direction of reducing the technical process, and the newer the graphics card, the smaller the numbers in this paragraph can be.
Passmark G3D Mark
The result shown by the graphics card in the test (benchmark) Passmark G3D Mark.
Benchmarks allow you to evaluate the actual capabilities (primarily overall performance) of a graphics card. This is especially convenient in light of the fact that adapters with similar characteristics in fact can differ markedly in capabilities (for example, due to the difference in the quality of optimization of individual components for joint work). And Passmark G3D Mark is the most popular benchmark for graphics adapters nowadays. The results of such a test are indicated in points, with a higher number of points corresponding to better performance. As of mid-2020, the most advanced graphics cards can score over 17,000 points.
Note that Passmark G3D Mark is used not only for general performance evaluation, but also to determine the compatibility of a graphics card with a specific processor. The CPU and graphics adapter must be approximately equal in terms of the overall level of computing power, otherwise one component will “pull back” the other: for example, a weak processor will not allow a powerful gaming graphics card to unleash the full potential. To search for a video adapter for a specific CPU model, you can use the list "Optimal for AMD processors" or "Optimal for Intel processors" in the selection of our catalog.
HDMI version
HDMI interface version supported by the graphics card. For details about HDMI itself, see above, and its versions can be as follows:
— v.1.4. The earliest HDMI standard found in video cards; was introduced in 2009. Despite its “venerable age”, it has good capabilities: it supports 4K video (4096x2160) at a frame rate of 24 fps, Full HD (1920x1080) at a frame rate of up to 120 fps, and is also suitable for transmitting 3D video.
— v.1.4b. The second improvement of the above v.1.4. The first update, v.1.4a, introduced support for two additional 3D video formats; and in HDMI v.1.4b, mostly minor improvements and additions to v 1.4a specifications were implemented, almost imperceptible to the average user.
— v.2.0. Standard introduced in 2013 to replace HDMI v.1.4. Thanks to its full 4K support (up to 60 fps), it is also known as HDMI UHD. In addition, there is enough bandwidth for simultaneous transmission of up to 32 audio tracks and up to 4 separate audio streams, and the list of supported frame formats has been replenished with ultra-wide 21:9.
— v.2.0b. The second update of the HDMI 2.0 standard described above, which differs primarily in HDR support. However, HDR compatibility itself appeared in the first update, v.2.0a; and version 2.0b added the ability to work with HDR10 and HLG standards.
— v.2.1. The newest common HDMI standard released in 2017. Capable of providing a frame rate of 120 fps in ultra-high resolu...tion video signal — from 4K to 8K inclusive; some improvements related to the use of HDR were also provided. Note that all the features of HDMI v.2.1 are available only when using cables marked Ultra High Speed, although basic functions work through ordinary cables.
DisplayPort version
The version of the DisplayPort and/or miniDisplayPort interface used by the graphics card. For the interfaces themselves, see the relevant help items; here we recall that they differ only in the type of plug. So the list of versions for both cases is the same, it looks like this:
— v 1.2. The earliest widely used version (2010). However, already in this version, 3D compatibility and the daisy chain mode appeared. The maximum fully supported resolution when connecting a single monitor is 5K (30 fps), transmission up to 8K is possible with certain restrictions; a frame rate of 60 Hz is supported up to a resolution of 3840x2160, and 120 Hz — up to 2560x1600. And when using daisy chain, you can connect up to 2 2560x1600 screens at 60 frames per second or up to 4 1920x1200 screens at the same time. In addition to the original version 1.2, there is an improved v 1.2a, the main innovation of which was support for AMD FreeSync, a technology used in AMD video cards to synchronize the refresh rate of the monitor with the actual frame rate output by the video adapter.
— v 1.3. An update introduced in 2014. The increased bandwidth made it possible to provide full, without restrictions, support for 8K at 30 fps, as well as transmit 4K images at 120 fps, sufficient for 3D work. Resolutions in daisy chain mode have also increased — up to 4K (3840x2160) at 60 fps for two screens and 2560x1600 at the same frame rate for four. Of the specific innovations, it is worth me...ntioning the Dual Mode mode, which allows you to connect HDMI and DVI devices to such a connector through the simplest passive adapters.
— v 1.4.Version introduced in March 2016. Formally, the bandwidth has not increased compared to the previous version, but thanks to signal optimization, it became possible to work with 4K and 5K resolutions at 240 fps and with 8K at 120 fps. However for this, the connected screen must support DSC encoding technology — otherwise, the available resolutions will not differ from version 1.3. In addition, v 1.4 added support for a number of special features, including HDR10, and the maximum number of simultaneously transmitted audio channels increased to 32.
—v 1.4a. An update released in 2018 "quietly" — without even an official press release. The main innovation was the update of Display Stream Compression technology from version 1.2 to version 1.2a.