USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison Nokia 3310 2017 Dual Sim 0 B vs Nokia C5 0.1 GB

Add to comparison
Nokia 3310 2017 Dual Sim 0 B
Nokia C5 0.1 GB
Nokia 3310 2017 Dual Sim 0 BNokia C5 0.1 GB
Compare prices 6
from $75.16 up to $87.96
Outdated Product
TOP sellers
Main
Support for two SIM-cards and expandable memory. Super long battery life. Nostalgic design.
Display
Main display
2.4 "
320x240
167 ppi
 
2.2 "
320x240
 
60 Hz
Hardware
Operating systemproprietary
proprietary /S60 rel. 3.2/
CPU frequency0.6 GHz
RAM0.1 GB
Memory card slotmicroSDmicroSD
Max. memory card storage32 GB16 GB
Main camera
Main lens
2 MP
3.2 MP
Flash
 /lED/
Connections and communication
Cellular technology
GSM
3G
SIM slots2 SIM
Connectivity technology
Bluetooth
Bluetooth
Inputs & outputs
microUSB
mini-jack (3.5 mm)
microUSB
mini-jack (3.5 mm)
Features and navigation
Features
 
FM receiver
no fingerprint scanner
FM receiver
Navigation
 
 
aGPS
GPS module
Power supply
Battery capacity1200 mAh1050 mAh
Removable battery
Fast chargingnonenone
General
Bezel/back cover materialplastic/plasticplastic
Dimensions (HxWxD)115.6х51х12.8 mm112x46x12.3 mm
Weight70 g89 g
Color
Added to E-Catalogfebruary 2017november 2010

Main display

Characteristics of the main (and most often the only) display installed in the device.

In addition to the basic properties - such as size, resolution (according to it, screens are conventionally divided into HD, Full HD, 2K and more), sensor type (most often IPS, OLED, AMOLED, Super AMOLED, Dynamic AMOLED,), this list can more specific features. Among them are the shape of the surface ( flat or curved), the presence and version of the Gorilla Glass coating (including the top v6 and Victus), HDR support and the refresh rate (a frequency on top 60 Hz is considered high, namely 90 Hz, 120 Hz and 144 Hz) . Here is a more detailed description of the characteristics relevant to modern displays:

- Size. Traditionally, the screen size is indicated in inches. A larger display is more convenient to use: more information is placed on i...t, and the image itself is better readable. The downside of increasing the size is an increase in the dimensions of the device. Today, smartphones with screens of 5" or less are considered small. 5.6 - 6" and up to 6.5" is already a medium format. Also, many modern models have a size of 6.5". Classic phones without touch screens do not need a large size - in them it usually does not exceed 3".

- Permission. Screen resolution is specified based on its vertical and horizontal dimensions in dots (pixels). The larger these dimensions (with the same size) - the more detailed and smoothed the picture looks and the less individual pixels are visible on it. On the other hand, increasing the resolution increases both the cost of the display itself and the requirements for the phone's hardware. It is also worth noting that the same resolution on screens of different sizes looks different; so when evaluating detail, it is worth considering not only this parameter, but also the PPI number (see below).

— PPI. The density of dots (pixels) on the screen of the device. It is indicated by the number of dots per " (points per ") - the number of pixels for each horizontal or vertical segment of 1 ". This indicator depends both on the size and resolution, but in the end it is the PPI number that determines how smooth and detailed the image on the display is. For comparison, we note that at a distance of about 25 - 30 cm from the eyes, a density of 300 PPI or more makes individual pixels almost invisible to a person with normal vision, the picture is perceived as a complete one; at greater distances, a similar effect is noticeable at a lower point density.

— Matrix type. The technology by which the screen sensor is made. This parameter is indicated only for relatively advanced displays that are superior in performance to the simplest LCD screens of push-button phones. The most widespread in our time are the following types of matrices:
  • IPS. The most popular technology for the screens of modern smartphones. It provides a very decent image quality, viewing angles and response speed, although it is somewhat inferior in these parameters to many more advanced options (see below). On the other hand, IPS also has important advantages: durability, uniform wear, and also a rather low cost. Thanks to this, such screens can be found in all categories of smartphones - from low-cost to top-end.
  • AMOLED. Organic light-emitting diode (OLED) sensor technology developed by Samsung. One of the key differences between such matrices and more traditional displays is that they do not require external illumination: each pixel is its own light source. Because of this, the power consumption of such a screen depends on the characteristics of the displayed image, but in general it turns out to be quite low. In addition, AMOLED matrices are distinguished by wide viewing angles, excellent brightness and contrast ratios, high color reproduction quality and fast response time. Due to this, such screens continue to be used in modern smartphones, despite the emergence of more advanced technologies; they can be found even in top-end models. The main disadvantage of this technology is the relatively high cost and uneven wear of the pixels: dots that work longer and more often at high brightness burn out faster. However, usually this effect becomes noticeable only after several years of intensive use - a period comparable to the operational resource of the smartphone itself.
  • AMOLED (LTPO). An advanced version of AMOLED panels with the ability to dynamically adjust the refresh rate depending on the tasks performed. The abbreviation LTPO stands for Low Temperature Polycrystalline Oxide. Behind this term is a combination of traditional LTPS technology and a thin layer of TFT oxide film with the addition of hybrid-oxide polycrystalline silicon to drive the sweep switching circuits. AMOLED panels (LTPO) reduce the energy consumption of the gadget by an order of magnitude. So, when performing active actions, the device screen uses the maximum or high refresh rate, and while viewing pictures or reading text, the display reduces the rate to a minimum.
  • Super AMOLED. An improved version of the AMOLED technology described on top One of the key improvements is that in Super AMOLED screens there is no air gap between the touch layer and the display located under it. This made it possible to further increase the brightness and image quality, increase the speed and reliability of the sensor response and at the same time reduce power consumption. The disadvantages of such matrices are the same as the original AMOLED. In general, they are quite widespread; most smartphones with similar screens belong to the middle and top categories, but there are also low-cost models.
  • OLED. Various types of matrices based on the use of organic light emitting diodes; in fact - analogues of AMOLED and Super AMOLED, produced not by Samsung, but by other companies. The specific features of such screens may be different, but for the most part they are, on the one hand, more expensive than popular IPS, on the other hand, they provide higher image quality (including brightness, contrast, viewing angles and color fidelity), and also consume less energy and have small thickness. The main disadvantages of OLED screens are the high price (which, however, is constantly decreasing as the technology develops and improves), as well as the susceptibility of organic pixels to burn-in when broadcasting static images for a long time or images with static elements (notification panel, on-screen buttons, etc.). ).
  • OLED (polymer). Organic Light-Emitting Diode (OLED) screens, which do not use glass as a base, but a transparent polymer material. We emphasize that we are talking about the basis of the sensor; from on top it is covered with the same glass as in other types of screens. However, this design offers a number of advantages over traditional "glass" matrices: it provides additional impact resistance and is great for creating curved displays. On the other hand, in terms of optical properties, plastic still falls short of glass; so screens of this type are often inferior in image quality to their “peers” made using traditional OLED technology, and with a similar picture quality, they are noticeably more expensive.
  • OLED (LTPO). OLED-matrices with adaptive refresh rate, which can be changed in a wide range based on the tasks performed. In games, screens with LTPO technology automatically raise the refresh rate to the maximum values, while viewing static images, they reduce it to a minimum (from 1 Hz). At the heart of the technology is a traditional LTPS substrate with a thin TFT oxide film on top of the TFT base. The ability to control the flow of electrons provides dynamic control over the refresh rate. The competitive advantage of OLED (LTPO) is reduced power consumption.
In addition, screens in modern smartphones can be made using the following technologies:
  • pls. A variation of IPS technology created by Samsung. In some respects - in particular, brightness, contrast and viewing angles - it surpasses the original, while it is cheaper to manufacture and allows you to create flexible displays. However, for a number of reasons, it is not particularly popular.
  • Super AMOLED Plus. A further development of the Super AMOLED technology described on top. Allows you to create even brighter, more contrasting and at the same time thin and energy-efficient screens. However, most often such screens in our time are simply referred to as "Super AMOLED", without the "Plus" prefix.
  • Dynamic AMOLED. Another AMOLED improvement introduced in 2019. The main features of such matrices are increased brightness without a significant increase in power consumption, as well as 100% coverage of the DCI-P3 color space and compatibility with HDR10 +; the last two points, in particular, make it possible to reproduce modern high-low-cost cinema on such screens with the highest quality. The main disadvantage of Dynamic AMOLED is traditional - the high price; so such matrices are found mainly in top models.
  • Super Clear TFT. A joint development by Samsung and Sony, which appeared as a forced alternative to Super AMOLED matrices (the demand for them at one time significantly exceeded production capabilities). True, the image quality of Super Clear TFT is somewhat lower - but in production such matrices are noticeably simpler and cheaper, but in terms of performance they still surpass most IPS screens. However, in our time, this technology is rare, giving way to AMOLED in different versions.
  • super LCD. Another alternative to various kinds of AMOLED technology; used mainly in HTC smartphones. Similar to Super AMOLED, such screens do not have an extra air gap, which has a positive effect on both image quality and the clarity of sensor responses. A notable advantage of the Super LCD is its good power efficiency, especially when displaying bright whites; but in terms of overall color saturation (including black), this technology is noticeably inferior to AMOLED.
  • LTPS. An advanced type of TFT matrices, created on the basis of the so-called. low temperature polycrystalline silicon. It allows you to easily create screens with a very high pixel density (more than 500 PPI - see on top), achieving high resolutions even with a small size. In addition, part of the control electronics can be built directly into the sensor, reducing the overall thickness of the display. The main disadvantage of LTPS is the relatively high cost, but nowadays such screens can be found even in low-cost smartphones.
  • S-PureLED. A technology developed by Sharp and used primarily in its smartphones. Actually, the technology of the matrices themselves in this case is called S-CG Silicon TFT, and S-PureLED is the name of a special layer used to increase transparency. S-CG Silicon TFT is positioned by the creators as a modification of the LTPS technology described on top, which allows to further increase the resolution of the display and at the same time build more control electronics into it (up to a whole “processor on glass”) without increasing the thickness. Of course, these screens are not cheap.
  • e-ink. Matrices based on the so-called "electronic ink" - a technology common primarily in electronic books. The main feature of such a screen is that during its operation, energy is spent only on changing the image; a still picture does not require power and can remain on the display even in the absence of power. In addition, by default, E-Ink matrices do not glow on their own, but reflect outside light - so their own backlight is not necessary for them (although it can be provided for work at dusk and darkness). All this provides a solid energy savings; and for some users, such screens are purely subjectively more comfortable and less tiring than traditional matrices. On the other hand, E-Ink technology also has serious drawbacks - first of all, a long response time, as well as the complexity and high cost of color displays, combined with poor color reproduction quality on them. In light of this, in smartphones, such matrices are a very rare and exotic option.
— Sweep frequency. The maximum display refresh rate, in other words, the highest frame rate that it can effectively reproduce. The higher this figure, the smoother and smoother the image is, the less noticeable the “slideshow effect” and blurring of objects when moving on the screen. At the same time, it should be borne in mind that the refresh rate of 60 Hz, supported by almost any modern smartphone, is quite sufficient for most tasks; even high-definition videos hardly make use of high frame rates these days. Therefore, the scanning frequency in our catalog is specially specified mainly for screens capable of delivering more than 60 Hz (in some models - up to 240 Hz). Such a high frequency can be useful in games and some other tasks, it also improves the overall experience of the OS interface and applications - moving elements in such interfaces move as smoothly as possible and without blurring.

HDR. A technology that allows you to expand the dynamic range of the screen. In this case, the range of brightness is implied - simply put, the presence of HDR allows the screen to display brighter whites and darker blacks than on displays without support for this technology. In practice, this gives a noticeable improvement in image quality: the saturation and reliability of the transmission of various colors improves, and the details in very light or very dark areas of the frame do not “sink” in white or black. However, all these advantages become noticeable only on the condition that the content being played is originally recorded in HDR. Nowadays, several varieties of this technology are used, here are their features:
  • HDR10. Historically the first of the consumer HDR formats, it is extremely popular today: in particular, it is supported by almost all streaming services with HDR content and is standardly used for such content on Blu-ray discs. Provides a color depth of 10 bits (more than a billion shades). At the same time, HDR10+ format content (see below) can also be played on devices with this technology, except that its quality will be limited by the capabilities of the original HDR10.
  • HDR10+. An improved version of HDR10. With the same color depth (10 bits), it uses the so-called dynamic metadata, which allows transmitting information about the color depth not only for groups of several frames, but also for individual frames. This results in an additional improvement in color reproduction.
  • Dolby vision. An advanced standard used particularly in professional cinematography. It allows you to achieve a color depth of 12 bits (almost 69 billion shades), uses the dynamic metadata mentioned on top, and also makes it possible to transmit two image options at once in one video stream - HDR and normal (SDR). At the same time, Dolby Vision is based on the same technology as HDR10, so in modern electronics this format is often combined with HDR10 or HDR10 +.


- DC Dimming support. Literally from English, Direct Current Dimming is translated as direct current dimming. This technology is designed to minimize flicker in OLED and AMOLED screens, which, in turn, reduces the load on the user's visual apparatus and protects eyesight. The “flicker-free” effect is achieved by directly controlling the brightness of the backlight LEDs by changing the voltage applied to them. Due to this, a decrease in the intensity of the glow of the screen is ensured.

- Curved screen. A screen that has curved edges to which the displayed image extends. In other words, in this case, not only glass is curved, but also part of the active sensor. Displays where both edges are curved are sometimes referred to as "2.5D glass" as well; also there are devices where the screen is bent only on one side. In any case, this feature gives the smartphone an interesting appearance and improves the visibility of the image from some angles, but it significantly affects the cost and can create inconvenience when holding (especially without a case). So before buying a model with such equipment, ideally, you should hold the device in your hand and make sure that it is comfortable enough.

- Gorilla Glass. Special high-strength glass used as a display cover. It is characterized by endurance and resistance to scratches, many times superior to ordinary glass in these indicators. It is widely used in smartphones, where large screen sizes put forward increased requirements for coverage reliability. Modern phones may have different versions of this glass, here are the features of different options:
  • Gorilla Glass v3. The oldest of the current versions is released in 2013; now found mainly among inexpensive or obsolete devices. However, this coating also has undoubted advantages: this is the first generation of Gorilla Glass, where the creators have made a noticeable emphasis on resistance to scratches from keys, coins and other objects that the phone can “collide” in a pocket or bag. In this respect, the v3 version remained unsurpassed until the release of Gorilla Glass Victus in 2020.
  • Gorilla Glass v4. Version released in 2014. A key feature was that the development of this coating focused on impact resistance (whereas previous generations focused mainly on scratch resistance). As a result, the glass is twice as strong as in version 3, despite the fact that its thickness is only 0.4 mm. But here's the scratch resistance, compared with its predecessor, has decreased slightly.
  • Gorilla Glass v5. A gorilla improvement released in 2016 to further improve impact resistance. According to the developers, the glass of the v5 version is 1.8 times stronger than its predecessor, remaining intact in 80% of drops from a height of 1.6 m "face down" on a rough surface (and guaranteed impact resistance is 1.2 m). Scratch resistance has also improved somewhat, but this material still falls short of v3 performance.
  • Gorilla Glass v6. Version introduced in 2018. For this coating, a 2-fold increase in strength compared to its predecessors is claimed, as well as the ability to endure multiple drops on a hard surface (in tests, v6 glass successfully endured 15 drops from a height of 1 m). The maximum drop height (single) with guaranteed integrity is declared at 1.6 m. Scratch resistance has received practically no improvement.
  • Gorilla Glass 7. Original name for Gorilla Glass Victus - see below.
  • Gorilla Glass Victus. The "heir" of Gorilla Glass 6, released in the summer of 2020. In this coating, the creators paid attention not only to increasing the overall strength, but also to improving scratch resistance. According to the latter indicator, Victus surpasses even the v3 version, not to mention more sensitive materials (and compared to v6, scratch resistance is claimed to be twice as high). As for durability, it allows you to guarantee to endure single drops from a height of up to 2 m, as well as up to 20 consecutive drops from a height of 1 m.

CPU frequency

The clock frequency of the CPU that the device is equipped with. For multi-core processors, which are standard in modern smartphones, the frequency of each individual core is implied; and if the processor has cores with different frequencies (see "Number of cores") — usually, the maximum indicator is given.

In general, high performance smartphones have high frequency of the processor. However, note that this parameter itself is not directly related to the capabilities of the CPU: many other features of the chip affect the actual performance, and often a low cost solution with a higher clock speed turns out to be less performant than an expensive one, and at the same time, presumably, more "slow" processor. In addition, the overall performance of the system directly depends on a whole set of other factors — primarily the amount of RAM. Therefore, when evaluating a smartphone, it is worth focus not so much on the frequency of the processor, but on the general specs of the system and visual indicators like the results in tests (see below).

RAM

The parameter determines the overall performance of the smartphone: the more RAM, the faster the device works and the better it copes with an abundance of tasks and / or resource-intensive applications (ceteris paribus). This is even more true in light of the fact that large amounts of "RAM" are usually combined with powerful advanced processors. However, only devices with identical operating systems can be directly compared with each other, and in the case of Android, with the same versions and editions of this OS (for more on all this, see "Operating system"). This is due to the fact that different operating systems and even different versions of the same OS can differ markedly in terms of RAM requirements. For example, iOS, thanks to good optimization for specific devices, is able to work efficiently with 3 GB of RAM. For modern versions of Android in the regular edition (not Go Edition), the mentioned 3 GB is actually the required minimum. Under such an OS, it is better to have at least 4 GB or 6 GB of RAM. In high-end devices with powerful electronic "stuffing" you can also find more impressive numbers - 8 GB or even 12 GB or more.

Max. memory card storage

The largest volume of memory card with which the phone supports. For more information about the cards themselves, see "Memory Card Slot"; here we note that capacious cards often use advanced technologies that are not supported by all devices, and sometimes phones simply do not have enough power to process large amounts of data. Therefore, for the convenience of choosing in our catalog, the maximum supported volume is indicated.

In fact, there are cases when some devices may exceed the claimed characteristics. However, it is worth focusing on official data, because, if officially supported volume is exceeded, normal operation of the card is not guaranteed.

Main lens

Specifications of the main lens of the rear camera installed in the phone. In models with several lenses (see “Number of lenses”), the main one is responsible for basic shooting capabilities and does not have a pronounced specialization (wide-angle, telephoto, etc.). Four main parameters can be indicated here: resolution, aperture ( high aperture optics are quite common), focal length, additional sensor data.

Resolution(in megapixels, MP)
Resolution of the sensor used for the main lens. Budget options are equipped with a module 8 MP and below, many models have 12 MP camera / 13 MP, also recently a trend towards increasing megapixels has been popular. Often in smartphones you can find the main photomodule at 48 MP, 50 MP< /a>, 64 MP and even 108 MP .

The maximum resolution of the resulting image directly depends on the resolution of the sensor; and the high resolution of the "picture", in turn, allows you to better display fine details. On the other hand, an increase in the number of megapixels in itself can lead to a deterioration in the overall image quality - due to the smaller size of each individual pixel, the noise level increases. As a result,...the direct resolution of the camera has little effect on the quality of the shooting - more depends on the physical size of the matrix, the features of the optics and various design tricks used by the manufacturer.

Aperture
Aperture describes the ability of a lens to transmit light. It is written as a fractional number, for example f/1.9. Moreover, the larger the number in the denominator, the lower the aperture ratio, the less light passes through the optics, all other things being equal. For example, an f/2.6 lens will be “darker” than f/1.9.

High aperture gives the camera a number of advantages. First, it improves the quality of shooting in low light. Secondly, it's possible to shoot at low shutter speeds, minimizing the effect of "stirring" and blurring of moving objects in the frame. Thirdly, with fast optics it is easier to achieve a beautiful background blur ("bokeh") — for example, when shooting portraits.

Focal length(in millimetres)
The focal length is a distance between the sensor and the centre of the lens (focused to infinity), at which the most clear image is obtained on the matrix. However, for smartphones, the specifications indicate not the actual, but the so-called equivalent focal length — a conditional indicator recalculated using special formulas. This indicator can be used to evaluate and compare cameras with different sensor sizes (the actual focal length cannot be used for this, since with a different sensor size the same real focal length will correspond to different viewing angles). (It is also worth saying that the equivalent focal length can be noticeably larger than the thickness of the case — there is nothing unusual in this, since this is a conditional, and not a real indicator).

Anyway, the field of view and the degree of magnification directly depend on the equivalent focal length: a larger focal length gives a smaller field of view and a larger size of individual objects that fall into the frame, and a decrease in this distance, in turn, allows you to cover more space. In most modern smartphones, the focal length of the main camera ranges from 13 to 35 mm; if compared with the optics of traditional cameras, then lenses with equivalent focal length up to 25 mm can be attributed to wide-angle lenses, more than 25 mm — to universal models “with a bias towards wide-angle shooting”. Such values are chosen due the fact that smartphones are often used for shooting in cramped conditions, when a fairly large space needs to fit into the frame at a small distance. Enlargement of the picture, if necessary, is most often carried out digitally — due to the reserve of megapixels on the sensor; but there are also models with optical zoom (see below) — for them, not one value is given, but the entire working range of the equivalent focal length (recall, optical zoom is carried out by changing the focal length).

Field of view(in degrees). It characterizes the size of the area covered by the lens, as well as the size of individual objects "seen" by the camera. The larger this field, the more of the scene gets into the frame, but the smaller the individual objects in the image are. The field of view is directly related to the focal length (see above): increasing this distance narrows the field of view of the lens, and vice versa.

Note that this parameter is generally considered important for professional use of the camera rather than for amateur photography. Therefore, viewing angle data is given mainly for smartphones equipped with advanced cameras — including in order to emphasize the high class of cameras. As for specific values, for the main lens they usually are in the range from 70° to 82° — this corresponds to the general specifics of such optics (universal shooting with an emphasis on general scenes and extensive coverage at short distances).

Additional Sensor Data
Additional information regarding the sensor installed in the main lens. This item can specify both the size (in inches) and the sensor model, and sometimes both parameters at once. Anyway, such data is provided only if the device is equipped with a high-end sensor. With the model, everything is quite simple: knowing the name of the sensor, you can find detailed data on it. The size is worth considering a little more.

The size of the sensor is traditionally indicated in fractional parts of an inch — accordingly, for example, a 1/2.3" sensor will be larger than 1/2.6". Larger sensors are considered more advanced, as they provide better image quality at the same resolution. The logic here is simple - due to the large sensor area, each individual pixel is also larger and gets more light, which improves sensitivity and reduces noise. Of course, the actual image quality will also depend on a number of other parameters, but in general, a larger sensor size usually means a more advanced camera. In advanced photo flagships, you can find matrices with a physical size of 1”, which is comparable to image sensors used in top compact cameras with fixed lenses.

Cellular technology

Communication standards supported by the mobile phone. In the modern world, several standards related to different generations are actively used: GSM, 3G, 4G (LTE), 5G (including fast mobile internet), CDMA. They vary in both specs and prevalence in different countries:

— GSM. The earliest of the communication standards found in modern telephones. Belongs to the second generation (2G). Allows you to make voice calls with acceptable sound quality, as well as transfer data at speeds up to 474 Kbps (using EDGE technology). Nowadays, GSM is considered completely obsolete, it has been almost universally replaced by more advanced standards of the next generations (3G, 4G, etc.). However, 2G support is found in most modern devices — not so much because of practical necessity, but because of technical features. The fact is that almost all communication standards that are relevant nowadays are add-ons over GSM, and modules for working with these standards are almost guaranteed to be compatible with GSM as well.

— 3G. In a broad sense, the 3G category (third generation communications) includes several standards. However, in the east european mobile phone market, this term refers specifically to the connection of the UMTS format. This standard is a development of GSM, such networks are often deployed on the basis of ready-made networks of the 2nd generation and c...an also serve GSM phones without problems. Specifically, UMTS provides data transfer rates from 2 to 70 Mbps, depending on additional technologies implemented by a particular operator. This is already comparable to fixed Internet access; so, despite the spread of newer standards, 3G communication and phones for it are still quite popular — especially since such devices are compatible with 4G and 5G networks.

— 4G (LTE). Communication 4 generations based on the LTE standard; other 4G standards are not used in mobile phones. LTE is a further development of 3G (UMTS), deployed on the basis of the same technical base, but operates at higher speeds — up to 173 Mbps, which is comparable to a full-fledged broadband Internet connection. LTE networks are commercially operated in many countries of the world, but not in all; therefore, before buying a 4G-compatible phone, it's a good idea to check if it will be possible to use all its features in your area.

— 5G. Further, after 4G, the development of mobile communication standards. In the official specifications of this generation, a peak speed of 20 Gbps for reception and 10 Gbps for transmission, guaranteed speed (at high network load) of 100 and 50 Mb/s, respectively, as well as a number of solutions aimed at improving reliability and overall connection quality. A set of such solutions includes, in particular, multi-element antenna arrays (Massive MIMO) and beamforming technologies (Beamforming) at base stations, as well as the possibility of direct communication between subscriber devices. With all this, this standard allows to reduce energy consumption in comparison with its predecessors.
Separately, it is worth mentioning the rumors about the dangers of 5G communications for health. According to modern scientific data, such a connection does not pose a danger to the human body, and the rumors mentioned are conspiracy theories that are not supported by any weighty arguments.

— CDMA. CDMA networks are known to users primarily by the activities of cell phone networks that provide the opportunity to receive a mobile phone with a direct city number. At one time, these networks competed with GSM and more advanced standards based on it, but as mobile communications developed and became cheaper, CDMA operators for the most part curtailed their activities in the voice communications market and switched to mobile Internet access services. It is worth noting here that the EV-DO Rev.A and Rev.B data transmission technologies available in CDMA networks are capable of providing connection speeds at the level of third-generation networks (up to 3.1 Mbps in the first case and up to 14.7 Mbps in the second), so in some places these services were promoted under the 3G label. However, this connection should not be confused with UMTS-based 3G (see above) — these are two fundamentally different standards that are incompatible with each other. Roughly speaking, if we are talking about 3G in a mobile phone, usually, we mean UMTS, but 3G modems more often use CDMA (EV-DO).

It is worth noting that the GSM, 3G and 4G standards (in that order) are, in fact, stages in the development of mobile networks of the same type. In fact, this means that a phone with support for a later standard, by definition, supports earlier ones — for example, a device with LTE is able to work with both GSM and 3G.

You also need to remember that different ranges can be used within the same standard, and not all of them can be supported in a mobile device. However phones officially sold in a certain country are usually optimized for local networks, and there should be no problems with them. But if the device is planned to be imported from another country, and it was not intended for the local market, it makes sense to first clarify the compatibility by bands. Otherwise, a situation may arise when the device simply “does not see” the network, although formally it will be compatible with a certain communication standard.

SIM slots

The quantity and types of removable cards (SIM, memory cards) that can be installed in the phone. On E-Catalog this parameter is specified only for devices that allow the installation of more than one SIM card — most often that means 2 SIM cards, however, you can find devices with three or even four corresponding slots.

Initially several slots mean that several phone numbers can be used on one device. Thus it is possible to combine personal and work numbers, separate plans for calls and the Internet, etc. in one device. However modern devices (especially smartphones) often provide the combined design “SIM + SIM / memory card " : one of the slots is intended only for SIM, the second can be used both for a SIM card or for a memory card such as microSD or Nano Memory (see "Memory card slot"). At the same time, there is no separate slot for a memory card in the device, so the user has to choose between the second number and additional storage. Therefore, if you want to use 2 SIM cards and a memory card at the same time, you should pay attention to models where this is directly stated.

It is also worth considering that individual slots may differ in the type of compatible SIM cards; see below for details.

Features

Additional features and capabilities of the device.

In modern mobile phones (especially smartphones) a very extensive amount of additional features can be provided. These can be both already familiar features, many of which are directly related to the original purpose of the device, as well as fairly new and/or unusual ones. The first category includes an emergency call button(often found on phones for the elderly), noise cancellation, FM receiver, notification light and a light sensor. The second category includes a face and fingerprint scanner (the latter can be located on the back cover, side panel, front and even right under the screen), gyroscope, advanced full-fledged flashlight, stereo sound, 3D surround sound, Hi-Res Audio and even such exotics as a barometer. Here is a more detailed description of each of these options:

— 3D face scanner. A special...technology for recognizing the user's face — not just by photographing, but by building a three-dimensional model of the face based on data from a special module on the front panel. This technology is constantly being improved, nowadays it is able to take into account the change of hairstyles and facial hair, the presence of glasses, makeup, etc. At the same time, the recognition of twins and children's faces still remains weak points (they have fewer individual features than adults ). The main use of a face scanner is authentication when unlocking a smartphone, entering applications, making payments, etc. At the same time, other, more original use cases are possible. For example, in some applications, the face scanner reads the user's facial expressions, and then this facial expression is repeated by an emoji on the phone screen.

— Fingerprint scanner. Fingerprint reader. It is mainly used for user authorization - for example, when unlocking the device, entering certain applications or accounts, confirming payments, etc. As for placement options, fingerprint scanners are increasingly moving from the back cover of the device to the surface of the side power / unlock button - to You can touch the sensor on the side with your thumb without releasing the smartphone from your hands and practically without changing your grip. Some time ago, sensors on the front of the case were quite popular - in particular, thanks to Apple, which was the first to tightly implement fingerprint recognition in its gadgets. However, such placement inevitably increases the size of the bottom frame, so the front fingerprint scanner is rare in modern smartphones. A good alternative to it is scanners right on the screen (more precisely, under the display matrix), which do not take up extra space on the front panel.

— Stereo sound. The ability to play full stereo sound through your phone's own speakers, without external audio devices. There must be at least two speakers for this task. This complicates the design and increases its cost, but it has a positive effect on the sound quality: the sound is more expressive and detailed than when using a single speaker, it has a volume effect, as well as a higher volume.

– 3D surround sound. The mechanics of spatial surround sound with localization of sound sources in three-dimensional space allows you to deeply immerse yourself in the atmosphere of films, enjoy listening to audio tracks, or completely immerse yourself in mobile gameplay. Algorithms for implementing 3D sound in smartphones differ in terms of software and hardware support, but they are all aimed at achieving the effect of realistic sound stage. Note that support for 3D surround sound can mean both commonly used technologies such as Dolby Atmos or DTS:X Ultra, as well as proprietary solutions from individual audio brands that have a hand in the sound subsystem of a mobile device (AKG, JBL, Harman, Huawei / Honor Histen, etc.).

– Hi-Res Audio. Mobile device support for high-resolution audio Hi-Res Audio - a digital signal with parameters from 96 kHz / 24 bits. Audio tracks in this format sound as close as possible to the original ideas of the authors of the compositions. The result is a sound that is as close as possible to what was recorded in the studio.

— FM receiver. Built-in module for receiving radio stations broadcasting in the FM band. Some devices also support other bands, but FM is the most popular nowadays (due to the ability to transmit stereo sound), it is in it that music radio stations usually broadcast. Note that some devices for reliable reception may require the connection of wired headphones — their cable plays the role of an external antenna.

— Notification indicator. Physically separate light beacon, pulsating or being constantly lighted up in response to incoming notifications of missed calls and received messages (including the ones from instant messengers and social network clients). Also, the indicator light usually signals a low remaining battery level and lights up during the battery recharging. The implementation of the notification indicator can be different: for some phones it is single-colour, for others it has colour coding of signals, flexibly adjustable for certain events through the settings menu. The light beacon allows you to visually comprehend the presence of incoming notifications without having to turn on the smartphone screen.

— Emergency call button. A separate button designed for use in critical situations. The specific features of such a button may be different, depending on the model: sending “alarming” SMS to selected numbers, automatically receiving calls from these numbers or calling them in turn, turning on the siren, etc. Anyway, the “emergency” button is usually clearly visible, and its presence is especially useful if the phone is used by an elderly person (in fact, in specialized devices designed for elderly, this button is almost mandatory).

— Noise suppression. An electronic filter that cleans the user's voice from extraneous noise (sounds of the street, the rumble of the wind in the microphone grille, etc.). Thus, the person at the other end of the line hears only the voice, with virtually no extra sounds. Of course, no noise reduction system is perfect; however, in most cases, this feature significantly improves the quality of the speech transmitted by the phone to the other person.

— Gyroscope. A device that tracks the rotation of a mobile phone in space. Modern gyroscopes, usually, work on all three axes and are able to recognize both the angle and the rate of turn; in addition, this feature almost necessarily means the presence of an accelerometer, which allows (among other things) to detect tremors and sharp movements of the device.

— Full-fledged flashlight. The presence of an advanced flashlight in the phone — more powerful than the usual one. The specific design and capabilities of such a flashlight may be different. So, in some devices, a separate LED (or a set of LEDs) is provided on the upper end, and this light source is used only as a flashlight. In others (mainly smartphones), we are talking about a special design of the flash: it consists of several LEDs, and only a part of them is usually used to illuminate when shooting, and all at once to work in flashlight mode. And the additional features of such a light source may include a laser pointer, beam focus, brightness control, etc. Anyway, most models with this feature are rugged devices with increased resistance to dust, moisture and shock (however, there are exceptions).

— Light sensor. A sensor that monitors the level of ambient light. It is mainly used to automatically adjust the brightness of the screen: in bright ambient light, it increases so that the image remains visible, and in twilight and darkness it decreases, which saves battery power and reduces eye fatigue.

— Barometer. Sensor for measuring atmospheric pressure. By itself, the barometer only determines this pressure at the current time, but the methods of using such data may be different, depending on the software installed on the phone. For example, some navigation applications can determine the elevation difference between individual points on the ground by the difference in atmospheric pressure at these points; and in weather programs, barometer data can improve the accuracy of weather forecasts. Also, this feature will be useful for weather-sensitive people: it signals a change in the weather, allowing you to more accurately determine the cause of ailments and take measures to eliminate them.

Navigation

Navigational features provided by a device, usually a smartphone.

It is almost mandatory for a modern smartphone to have a GPS module and a digital compass. In addition, aGPS is often provided to speed up work, and Dual GPS to improve accuracy. Here is a more detailed description of these features:

— aGPS. An auxiliary feature that allows you to speed up the start of the main GPS receiver. To work for its main purpose, such a receiver must update data on the location of navigation satellites; Obtaining this data in the classical way, directly from the satellites themselves, can take quite a long time (up to several minutes). This is especially true for the so-called "cold start" — when the receiver starts up after a long break in operation, and the data stored in it has become completely outdated. aGPS (Assisted GPS) allows you to receive up-to-date service information from mobile network — from the nearest base station (this feature is supported by most mobile networks nowadays). This can greatly speed up the startup process.

— GPS module. Navigation module that allows you to determine the current coordinates of the device through the GPS satellite navigation system. GPS is the oldest and most common of these systems. The standard accuracy of modern receivers of this standard is about 6 – 8 m, and with the use of special technologies — several decimetres. As for the GPS-mod...ules in phones, they only provide the current location; How this data is used may vary depending on the operating system and installed applications. Among the most common options are map navigation (including track recording), geotagging photos and posts on social networks, searching for various objects nearby (attractions, transport stops, shops, hotels, cafes / restaurants, emergency services, etc.) , displaying the user's location (for example, to a taxi or delivery service), etc.
Notes to this paragraph may indicate additional systems supported by satellite receivers — for example, the European Galileo system. The exception is the Russian GLONASS, compatibility with which is specified separately (see below).

— Dual GPS. Additional feature found in modern GPS receivers (see above). Such receivers do not operate at one frequency, like traditional modules, but at two ("L1 + L5") — thus receiving two signal packets at once and comparing them with each other. This type of work significantly improves positioning accuracy — in some cases up to 10 – 20 cm. In addition, Dual GPS allows you to correctly process signals reflected from tall buildings — this increases efficiency in dense urban areas. However, it is worth noting that it is not always possible to use all the advantages of this feature. Full support for L5 is available only in the European Galileo system; in GPS (as of 2020), only about half of the satellites carry out such broadcasting, and in GLONASS it is not expected before 2030. In addition, compatibility may be limited by the capabilities of the smartphone: for example, in some models, Dual GPS mode becomes available only after a firmware update.

— GLONASS. Ability to use the GLONASS satellite navigation system. It is a Russian alternative to the American GPS, also providing global coverage. In standard mode, it almost does not differ in accuracy from GPS (about 5 – 10 m), but in special modes it is noticeably inferior (2.8 m versus 30 cm). Therefore, in modern smartphones, GLONASS is practically not used as the main navigation system — usually compatibility with it is provided as an additional feature of the GPS module. The ability to receive signals from two satellite systems at once has a positive effect on the quality of navigation, especially in dense urban areas, indoors and in mountainous areas: the number of dead zones decreases, the satellite search time decreases, and positioning accuracy improves.

— Galileo. European satellite navigation system, created as an alternative to the American GPS. Note that it is under the control of civilian departments, not the military. With a full fleet of 24 active satellites, the system gives an accuracy of up to 1 m in public mode and up to 20 cm with the GHA service. Working in conjunction with GPS, the Galileo system provides a more accurate position measurement, especially in densely populated areas.

— Digital compass. An electronic analogue of a conventional compass: a module that allows you to determine the direction to the cardinal points. Usually, it uses the same principle of operation, and the design is based on a miniature magnetic sensor. Along with the GPS module, it is an almost mandatory feature for modern smartphones. However digital compasses for the most of them are not accurate — but this drawback is not critical, since in the case of a smartphone, such accuracy is extremely rarely required.
Nokia 3310 2017 Dual Sim often compared