USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison Motorola Moto G23 128 GB / 8 GB vs Motorola Moto G13 128 GB

Add to comparison
Motorola Moto G23 128 GB / 8 GB
Motorola Moto G13 128 GB
Motorola Moto G23 128 GB / 8 GBMotorola Moto G13 128 GB
Compare prices 1Compare prices 5
TOP sellers
Main
The display is protected by Panda Glass. The sampling rate of the sensor layer is 576 Hz.
The display is protected by Panda Glass. The sampling rate of the sensor layer is 576 Hz.
Display
Main display
6.5 "
1600х720 (20:9)
270 ppi
IPS
90 Hz
Panda Glass
6.5 "
1600х720 (20:9)
270 ppi
IPS
90 Hz
Panda Glass
Display-to-body ratio83 %83 %
Hardware
Operating systemAndroid 13Android 13
Stock Android
CPU modelHelio G85Helio G85
CPU frequency2 GHz2 GHz
CPU cores88
Processor rating1111
GPUARM Mali-G52 MC2ARM Mali-G52 MC2
RAM8 GB4 GB
Memory storage128 GB128 GB
Memory card slotmicroSDmicroSD
Max. memory card storage512 GB512 GB
SIM slots2 SIM2 SIM
SIM card typenano-SIMnano-SIM
Test results
AnTuTu Benchmark217547 score(s)213199 score(s)
Geekbench1358 score(s)
Main camera
Lenses3 modules3 modules
Main lens
50 MP
f/1.8
50 MP
f/1.8
Ultra wide lens
5 MP
f/2.2
125 °
 
 
 
Auxiliary lens
 /2 MP, f/2.4/
Macro lens
 /2 MP, f/2.4/
 /2 MP, f/2.4/
Full HD (1080p)30 fps30 fps
Flash
Front camera
Form factorin displayin display
Main selfie lens16 MP8 MP
Aperturef/2.45f/2.0
Connections and communication
Cellular technology
4G (LTE)
VoLTE
4G (LTE)
VoLTE
Connectivity technology
Wi-Fi 5 (802.11ac)
Bluetooth v 5.1
NFC
Wi-Fi 5 (802.11ac)
Bluetooth v 5.1
NFC
Inputs & outputs
USB C 2.0
mini-Jack (3.5 mm)
top headphone output
USB C 2.0
mini-Jack (3.5 mm)
top headphone output
Features and navigation
Features
side fingerprint scanner
Dolby Atmos
noise cancellation
gyroscope
flashlight
light sensor
side fingerprint scanner
Dolby Atmos
 
gyroscope
flashlight
light sensor
Navigation
aGPS
GPS module
GLONASS
Galileo
aGPS
GPS module
GLONASS
Galileo
Power supply
Battery capacity5000 mAh5000 mAh
Battery life (PCMark)12.37 h12.97 h
Fast chargingMotorola TurboPowerMotorola TurboPower
Charger power30 W10 W
Wireless charging
General
WaterproofIP52IP52
Bezel/back cover materialplasticplastic
Back covermatte
What's in the box?
case
charger
case
charger
Dimensions (HxWxD)162.7x74.66x8.19 mm162.7x74.66x8.19 mm
Weight184 g183 g
Color
Added to E-Catalogjanuary 2023january 2023

RAM

The parameter determines the overall performance of the smartphone: the more RAM, the faster the device works and the better it copes with an abundance of tasks and / or resource-intensive applications (ceteris paribus). This is even more true in light of the fact that large amounts of "RAM" are usually combined with powerful advanced processors. However, only devices with identical operating systems can be directly compared with each other, and in the case of Android, with the same versions and editions of this OS (for more on all this, see "Operating system"). This is due to the fact that different operating systems and even different versions of the same OS can differ markedly in terms of RAM requirements. For example, iOS, thanks to good optimization for specific devices, is able to work efficiently with 3 GB of RAM. For modern versions of Android in the regular edition (not Go Edition), the mentioned 3 GB is actually the required minimum. Under such an OS, it is better to have at least 4 GB or 6 GB of RAM. In high-end devices with powerful electronic "stuffing" you can also find more impressive numbers - 8 GB or even 12 GB or more.

Test results

The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.

AnTuTu Benchmark

The result shown by the device when passing the AnTuTu Benchmark performance test.

AnTuTu Benchmark is a comprehensive test designed specifically for mobile devices, primarily smartphones and tablets. It checks the efficiency of the processor, memory, graphics and I/O systems, thus providing a fairly visual impression of the capabilities of the system. The better the result, the more points are given at the end. And high-performance by AnTuTu rating are smartphones that score over 750K points

Like any benchmark, this test does not give absolute accuracy: the same device can show different results, usually with deviations within 5 – 7%. These deviations depend on many factors that are not directly related to the system — from the load of the device with third-party programs to the air temperature during testing. So, it is possible to speak about a significant difference between the two models only if the difference in their indicators goes beyond those 5 – 7%.

Geekbench

The result shown by the device when passing the performance test (benchmark) Geekbench.

Geekbench is a specialized benchmark designed for CPUs. Since version 4.0, the test has also been applied to graphics accelerators; towards the end of 2019, the benchmark was released under the number "5". The characteristics of portable gadgets usually provide data specifically for the CPU. During testing, Geekbench simulates the workloads that occur when performing real-world tasks, and takes into account both the capabilities of a single core and the efficiency of multiple cores running simultaneously. Thanks to this, the final results characterize well the capabilities of the processor in everyday use. In addition, the test is cross-platform and allows you to compare the CPUs of different devices (smartphones, tablets, laptops, PCs). The help information only lists the multi-core test values for CPU.

Ultra wide lens

Specs of the ultra wide-angle lens of the main camera installed in the phone.

These details are relevant only for cameras with several lenses (see "Number of lenses") — and not all, but only those where there is a lens with a small focal length (much less than in the main lens) and, accordingly, wider viewing angles. It is called ultra-wide. In the same paragraph, four main parameters can be indicated: resolution, aperture ratio, focal length and additional sensor data.

Resolution(in megapixels, MP)
The resolution of the sensor used for the ultra-wide lens.

The maximum resolution of the resulting image directly depends on the resolution of the sensor; and the high resolution of the "picture" allows you to capture small details better. On the other hand, an increase in the number of megapixels in itself can lead to a deterioration in the overall image quality — due to the smaller size of each individual pixel, the noise level increases. As a result, the direct resolution of the camera has little effect on the quality of photos and videos — a lot also depends on the size of the sensor, the features of the optics and various design tricks used by the manufacturer. At the same time, we note that the more megapixels a camera has, the more likely it is to implement various additional solutions aimed at improving image quality.

As for the specific resolution of ultra-wide optics, it can co...rrespond to the number of megapixels in the main lens (see "Main lens") or be lower, sometimes quite noticeable (for example, 8 MP with the main optics at 48 MP). This is due to the fact that an ultra-wide-angle lens often plays a secondary role, for which a small resolution is more than enough.

Aperture
Aperture describes the ability of a lens to transmit light. It is written as a fractional number, for example f/1.9. Moreover, the larger the number in the denominator, the lower the aperture ratio, that is, for example, an f/2.6 lens will transmit less light than f/1.9.

High aperture gives the camera a number of advantages: it allows you to shoot at low shutter speeds, minimizing the likelihood of “shake”, and also makes it easier to shoot in low light and shoot with artistic background blur (bokeh). However, for an ultra-wide lens, such features are not as important as for the main camera — such lenses usually have a specific purpose, and their small aperture is often more desirable, which allows you to increase the depth of field. So in general, this parameter is more of a reference than practically significant when choosing.

Focal length
The focal length is a distance between the sensor and the centre of the lens (focused to infinity), at which the most clear image is obtained on the sensor. However, for smartphones, the specifications indicate not the actual, but the so-called equivalent focal length — a conditional indicator recalculated using special formulas. This indicator can be used to evaluate and compare cameras with different sensor sizes (the actual focal length cannot be used for this, since with a different sensor size the same real focal length will correspond to different viewing angles).

Anyway, the viewing angle and the degree of magnification directly depend on the equivalent focal length: a larger focal length gives a smaller viewing angle and a larger size of individual objects that fall into the frame, and a decrease in this distance, in turn, allows you to cover more space. Ultra-wide optics, by definition, must have very short focal lengths — smaller than the corresponding main optics. However, "ultra-wide" focal lengths typically range from 13 mm to 26 mm; such values are not rare among the main lenses. At the same time, there is nothing illogical here — the point is the ratio of focal lengths in each individual smartphone. For example, a camera with a 25mm primary lens can carry a 16mm or 17mm ultra-wide lens; and models with a primary lens less than 24mm usually do not have additional ultra-wide optics at all, since the existing lens perfectly plays this role just fine. Also note that the difference between these types of optics is not as significant as one might imagine; and in some devices, both focal lengths are generally the same, while the difference in specialization is achieved due to the features of image processing in each lens.

Field of view(in degrees) It is the size of the area covered by the lens, as well as the size of individual objects "seen" by the camera. The larger this angle, the more of the scene gets into the frame, but the smaller the individual objects in the image are. The field of view is directly related to the focal length (see above): increasing this distance narrows the field of view of the lens, and vice versa.

Note that this parameter is generally considered important for professional use of the camera rather than for amateur photography. Therefore, the field of view data is given mainly for smartphones equipped with advanced cameras — including in order to emphasize the high class of cameras in this way. As for specific values, ultra-wide-angle optics, by definition, have very wide angles — from 107° and above; in some models, this figure reaches 125°.

Additional Sensor Data
Additional information regarding the sensor installed in the ultra-wide lens. This item can specify both the size (in inches) and the sensor model, and sometimes both parameters at once. Anyway, such data is provided only if the device is equipped with a high-class sensor. With the model, everything is quite simple: knowing the name of the sensor, you can find detailed data on it. The size is worth considering a little more.

The size of the sensor is traditionally indicated in fractional parts of an inch — accordingly, for example, a 1/3.1" sensor will be larger than 1/4". Larger sensors are considered more advanced, as they provide a better image at the same resolution. This is due to the fact that due to the larger sensor area, each individual pixel is also larger and receives more light, which improves sensitivity and reduces noise. Of course, the actual image quality will also depend on a number of other parameters, but in general, a larger sensor size usually means a more advanced camera. However, in ultra-wide lenses, the sensors are generally noticeably smaller than in the main ones — for example, the mentioned 1/3.1" and 1/4" are quite common options. This is primarily due to the secondary role of such cameras.

Auxiliary lens

The presence of an auxiliary lens in the module of the main (rear) camera of the smartphone. Common to all auxiliary lenses is that they themselves do not shoot, but only supply the main camera with some useful additional data. But the types of this data and, accordingly, the methods of using auxiliary cameras can be different.

So, in some smartphones, an additional lens of a very small resolution is installed, which is used to obtain special information about the depth of field in some shooting modes (primarily in portrait mode). This format of work gives a number of interesting features — in particular, it allows you to change the depth of focus on an already finished image, moving the focus to a particular subject. Another interesting option is the so-called ToF (time of flight) cameras, which work on the principle of rangefinders and are capable of creating 3D models of various objects (including reading facial expressions from the user's face). There are other options, such as a black-and-white secondary camera for greater dynamic range and a fast aperture for better low-light performance.

Main selfie lens

Resolution of the main lens of the front camera installed in the phone. For models with several lenses (see "Front camera" — "Number of lenses"), the main one is the one responsible for the main part of the shooting and does not have a pronounced specialization (auxiliary, ultra-wide-angle, etc.).

Initially, the front cameras were intended for video communication, but nowadays, for many users their only function is still taking a selfie. Therefore, although the resolution of such cameras is generally lower than that of the rear ones, however, among them there are also very solid indicators — 8 MP, 13 MP, and in specialized "selfie smartphones" — 16 MP, 20 MP, 24 MP, 32 MP and higher. Lower values — 5 MP, as well as 2 MP — are typical mainly for low cost and frankly outdated devices.

Keep in mind that the resolution of the sensor itself determines only the detail of the images and does not affect the overall quality of photos and videos; on the other hand, a higher number of megapixels often means a more advanced camera, with a number of technical features designed to provide high quality images. Therefore, on the one hand, it makes sense for lovers of high-quality selfies to look for...front modules with a higher resolution; on the other hand, cameras with the same resolution can differ significantly in the final quality of the photos and videos. So if the ability to take a selfie is crucial for you, you should look not only at the number of megapixels, but also at the actual examples of pictures from a particular camera (for example, in reviews).

Aperture

Aperture of the main lens of the front camera installed in the phone. For models with several lenses (see "Front camera" — "Number of lenses"), the main one is the lens which is responsible for the main part of the shooting and does not have a pronounced specialization (auxiliary, ultra-wide-angle, etc.).

This parameter is indicated by a fraction, for example f/1.7; the smaller the number in denominator, the higher the aperture ratio, the more light the lens is able to transmit. Theoretically, a better aperture improves low-light performance, reduces motion blur, and can be useful for creating beautiful background blur; however, in fact, looking for a fast front camera(f/1.9 and better) makes sense mainly in cases where you plan to take selfies often and in large quantities and want to achieve the maximum quality of such pictures.

Features

Additional features and capabilities of the device.

In modern mobile phones (especially smartphones) a very extensive amount of additional features can be provided. These can be both already familiar features, many of which are directly related to the original purpose of the device, as well as fairly new and/or unusual ones. The first category includes an emergency call button(often found on phones for the elderly), noise cancellation, FM receiver, notification light, a simple flashlight and a light sensor. The second category includes a face and fingerprint scanner (the latter can be located on the back cover, side panel, front and even right under the screen), gyroscope, advanced full-fledged flashlight, stereo sound, 3D surround sound, Hi-Res Audio, augmented reality support and even such exotics as a barometer.... Here is a more detailed description of each of these options:

— Face scanner (FaceID). A special technology for recognizing the user's face — not just by photographing, but by building a three-dimensional model of the face based on data from a special module on the front panel. This technology is constantly being improved, nowadays it is able to take into account the change of hairstyles and facial hair, the presence of glasses, makeup, etc. At the same time, the recognition of twins and children's faces still remains weak points (they have fewer individual features than adults ). The main use of a face scanner is authentication when unlocking a smartphone, entering applications, making payments, etc. At the same time, other, more original use cases are possible. For example, in some applications, the face scanner reads the user's facial expressions, and then this facial expression is repeated by an emoji on the phone screen.

— Fingerprint scanner. Fingerprint reader. It is mainly used for user authorization - for example, when unlocking the device, entering certain applications or accounts, confirming payments, etc. As for placement options, fingerprint scanners are increasingly moving from the back cover of the device to the surface of the side power / unlock button - to You can touch the sensor on the side with your thumb without releasing the smartphone from your hands and practically without changing your grip. Some time ago, sensors on the front of the case were quite popular - in particular, thanks to Apple, which was the first to tightly implement fingerprint recognition in its gadgets. However, such placement inevitably increases the size of the bottom frame, so the front fingerprint scanner is rare in modern smartphones. A good alternative to it is scanners right on the screen (more precisely, under the display matrix), which do not take up extra space on the front panel.

— Google AR Core. Smartphone support for Google AR Core augmented reality (AR) technology. This technology is used to work with AR in Android smartphones. Read more about augmented reality and special technologies below.

— Apple AR Kit. Smartphone support for augmented reality (AR) technology Apple AR Kit. This technology is used to work with AR in Apple smartphones running on iOS. Read more about augmented reality and special technologies below.

— Support for special augmented reality technologies. The general idea of augmented reality (AR) is to add certain additional elements to the image of the real world that is visible on the screen of the device, "embedded" in the real world and looking like a part of it. One of the most famous examples of AR is the game Pokemon Go, where the player had to use the camera to look for virtual Pokemon in a real area. Other applications are navigation (displaying a "guide line" directly on the smartphone screen over the image from the camera), interior design (the ability to virtually fit one or another object into an existing environment), car repair (highlighting key details, "X-ray vision") etc. However, in this case, we are talking not just about the ability to work with AR applications, but about support for special augmented reality technologies — usually Google AR Core or Apple AR Kit. The peculiarity of these technologies is that they expand the possibilities available to both users and software developers. So, users get a more extensive set of AR applications, with more advanced abilities; and the developers of such applications can be not only large companies, but almost everyone, including individual specialists.

— Stereo sound. The ability to play full stereo sound through your phone's own speakers, without external audio devices. There must be at least two speakers for this task. This complicates the design and increases its cost, but it has a positive effect on the sound quality: the sound is more expressive and detailed than when using a single speaker, it has a volume effect, as well as a higher volume.

– 3D surround sound. The mechanics of spatial surround sound with localization of sound sources in three-dimensional space allows you to deeply immerse yourself in the atmosphere of films, enjoy listening to audio tracks, or completely immerse yourself in mobile gameplay. Algorithms for implementing 3D sound in smartphones differ in terms of software and hardware support, but they are all aimed at achieving the effect of realistic sound stage. Note that support for 3D surround sound can mean both commonly used technologies such as Dolby Atmos or DTS:X Ultra, as well as proprietary solutions from individual audio brands that have a hand in the sound subsystem of a mobile device (AKG, JBL, Harman, Huawei / Honor Histen, etc.).

– Hi-Res Audio. Mobile device support for high-resolution audio Hi-Res Audio - a digital signal with parameters from 96 kHz / 24 bits. Audio tracks in this format sound as close as possible to the original ideas of the authors of the compositions. The result is a sound that is as close as possible to what was recorded in the studio.

— FM receiver. Built-in module for receiving radio stations broadcasting in the FM band. Some devices also support other bands, but FM is the most popular nowadays (due to the ability to transmit stereo sound), it is in it that music radio stations usually broadcast. Note that some devices for reliable reception may require the connection of wired headphones — their cable plays the role of an external antenna.

— Notification indicator. Physically separate light beacon, pulsating or being constantly lighted up in response to incoming notifications of missed calls and received messages (including the ones from instant messengers and social network clients). Also, the indicator light usually signals a low remaining battery level and lights up during the battery recharging. The implementation of the notification indicator can be different: for some phones it is single-colour, for others it has colour coding of signals, flexibly adjustable for certain events through the settings menu. The light beacon allows you to visually comprehend the presence of incoming notifications without having to turn on the smartphone screen.

— Emergency call button. A separate button designed for use in critical situations. The specific features of such a button may be different, depending on the model: sending “alarming” SMS to selected numbers, automatically receiving calls from these numbers or calling them in turn, turning on the siren, etc. Anyway, the “emergency” button is usually clearly visible, and its presence is especially useful if the phone is used by an elderly person (in fact, in specialized devices designed for elderly, this button is almost mandatory).

— Noise suppression. An electronic filter that cleans the user's voice from extraneous noise (sounds of the street, the rumble of the wind in the microphone grille, etc.). Thus, the person at the other end of the line hears only the voice, with virtually no extra sounds. Of course, no noise reduction system is perfect; however, in most cases, this feature significantly improves the quality of the speech transmitted by the phone to the other person.

— Gyroscope. A device that tracks the rotation of a mobile phone in space. Modern gyroscopes, usually, work on all three axes and are able to recognize both the angle and the rate of turn; in addition, this feature almost necessarily means the presence of an accelerometer, which allows (among other things) to detect tremors and sharp movements of the device. This provides advanced control options — in particular, gyroscopes are indispensable when working with augmented reality (see above) or when using VR glasses into which a smartphone is installed.

— Flashlight. The ability to use the phone as a flashlight. We emphasize that in this case we are usually talking about the simplest version of a flashlight — when this feature is performed by the flash of the main camera, which is turned on through the software settings. More advanced lamps are indicated in the specs as a "full-fledged flashlight" (see below).

— Full-fledged flashlight. The presence of an advanced flashlight in the phone — more powerful than the usual one (see above). The specific design and capabilities of such a flashlight may be different. So, in some devices, a separate LED (or a set of LEDs) is provided on the upper end, and this light source is used only as a flashlight. In others (mainly smartphones), we are talking about a special design of the flash: it consists of several LEDs, and only a part of them is usually used to illuminate when shooting, and all at once to work in flashlight mode. And the additional features of such a light source may include a laser pointer, beam focus, brightness control, etc. Anyway, most models with this feature are rugged devices with increased resistance to dust, moisture and shock (however, there are exceptions).

— Light sensor. A sensor that monitors the level of ambient light. It is mainly used to automatically adjust the brightness of the screen: in bright ambient light, it increases so that the image remains visible, and in twilight and darkness it decreases, which saves battery power and reduces eye fatigue.

— Barometer. Sensor for measuring atmospheric pressure. By itself, the barometer only determines this pressure at the current time, but the methods of using such data may be different, depending on the software installed on the phone. For example, some navigation applications can determine the elevation difference between individual points on the ground by the difference in atmospheric pressure at these points; and in weather programs, barometer data can improve the accuracy of weather forecasts. Also, this feature will be useful for weather-sensitive people: it signals a change in the weather, allowing you to more accurately determine the cause of ailments and take measures to eliminate them.
Motorola Moto G23 often compared
Motorola Moto G13 often compared