USA
Catalog   /   Computing   /   Desktop PCs

Comparison ETE GAME CASUAL PLUS vs ETE Darkness PC Darkness Bronze

Add to comparison
ETE GAME (CASUAL PLUS)
ETE Darkness PC (Darkness Bronze)
ETE GAME CASUAL PLUSETE Darkness PC Darkness Bronze
Outdated ProductOutdated Product
TOP sellers
Product typegaminggaming
Form factorMidi TowerMidi Tower
CPU
ChipsetAMD A320AMD A320
Typedesktopdesktop
SeriesRyzen 3Ryzen 3
Model12001200
Code nameSummit Ridge (Zen)Summit Ridge (Zen)
Cores44
Threads44
Speed3.1 GHz3.1 GHz
TurboBoost / TurboCore3.4 GHz3.4 GHz
Memory
RAM8 GB8 GB
Memory typeDDR4DDR4
Speed2666 MHz2666 MHz
Number of slots22
Max. memory support32 GB32 GB
Graphics card
Graphics card typededicateddedicated
Graphics card modelRadeon RX 550GeForce GT 1030
Graphics memory4 GB2 GB
Memory typeGDDR5GDDR5
Storage
Drive typeHDDHDD+SSD
Drive capacity1000 GB1000 GB
2nd drive capacity120 GB
Back panel
Connectors
 
 
DVI
HDMI output
Front Panel
Optical driveis absentis absent
5.25" compartments1
mini-Jack (3.5 mm)
USB 2.02
Multimedia
LAN (RJ-45)1 Gbps1 Gbps
Wi-Fiis absentis absent
Sound7.17.1
General
PSU power500 W450 W
Preinstalled OSno OSno OS
Materialsteelsteel
Dimensions (HxWxD)435x180x385 mm
Color
Added to E-Catalogjanuary 2020september 2019

Graphics card model

The main manufacturers of video cards nowadays are AMD, NVIDIA and Intel, and each has its own specifics. NVIDIA produces primarily discrete solutions; Among the most common are the GeForce MX1xx, GeForce MX3xx, GeForce GTX 10xx series (in particular GTX 1050, GTX 1050 Ti and GTX 1060), GeForce GTX 16xx, GeForce RTX 20xx, GeForce RTX 30xx( GeForce RTX 3060, GeForce RTX 3060 Ti, GeForce RTX 3070, GeForce RTX 3070 Ti, GeForce RTX 3080, GeForce RTX 3080 Ti, GeForce RTX 3090, GeForce RTX 3090 Ti), GeForce RTX 4060 , GeForce RTX 4060 Ti, GeForce RTX 4070, GeForce RTX 4070 SUPER, GeForce RTX 4070 Ti, GeForce RTX 4070 Ti SUPER, Ge Force RTX 4080, GeForce RTX 4080 SUPER, GeForce RTX 4090 and separate Quadro series. AMD offers both discrete and integrated graphics - including the popular Radeon RX 500, Radeon RX 5000, Radeon RX 6000 and AMD Radeon Pro series. And Intel deals exclusively with modules integrated into processors of its own production - these can be HD Graphics, UHD Graphics and Iris.

Note that many configurations with discrete graphics also have an integrated graphics module; in such cases, the name of the discrete video card is indicated as more advanced.

Graphics memory

The amount of native memory provided by the discrete graphics card (see "Graphics card type").

The larger this volume, the more powerful and advanced the video adapter is, the better it handles with complex tasks and, accordingly, the more expensive it is. Nowadays, 2 GB and 3 GB are considered quite modest, 4 GB are not bad, 6 GB and 8 GB are very solid, and more than 8 GB means that we have a specialized PC built for maximum graphics performance.

Drive type

The type of storage device that is installed in the computer.

Note that many PCs allow you to add a complete drive or even completely replace it, but it is more convenient to buy a suitable configuration initially and not bother with re-equipment. In terms of types, traditional hard disk drives ( HDD) are increasingly losing ground to SSD solid-state modules nowadays. In addition, HDD + SSD combinations are quite popular (including those using advanced Intel Optane and Fusion Drive technologies). But solutions such as SSHD and eMMC have practically fallen into disuse. Let's take a closer look at these options:

— HDD. Classic hard disk. The key advantage of such drives is their low cost per unit of volume — this allows you to create capacious and at the same time inexpensive storage. On the other hand, HDDs are noticeably inferior to SSDs in terms of speed, and they also do not tolerate shocks and shocks. Thus, this type of media is less and less used in its pure form — it is much more common to find a combination of a hard drive with an SSD module (see below).

— SSD. Solid state drives based on flash memory. With the same volume, an SSD is much more expensive than an HDD, but this is justified by a number of advantages. First, such drives are much faster than hard drives; specif...ic performance may be different (depending on the type of memory, connection interface, etc.), however, even inexpensive SSDs outperform advanced HDDs in this indicator. Secondly, solid-state memory has no moving parts, which offers several advantages at once: lightness, compactness, shock insensitivity and low power consumption. And the cost of such memory is constantly decreasing as technology advances. So more and more modern PCs are equipped with just such drives, and these can be configurations of any level — from low-cost to top ones.

— HDD+SSD. The presence in one system of two drives at once — HDD and SSD. Each of these varieties is described in more detail above; and their combination in one system allows you to combine the advantages and partially compensate for the shortcomings. For example, an SSD (which usually has a fairly small capacity) can store system files and other data for which speed of access is important (for example, work applications); and HDD is well suited for large volumes of information that do not require particularly high speed (a typical case is video files and other multimedia content). In addition, the solid-state module can be used not as a separate storage, but as an intermediate cache to speed up the hard drive; however, this usually requires special software settings (whereas the "two separate drives" mode is most often available by default).
We also emphasize that in this case we are talking about “ordinary” SSD modules that do not belong to the Optane and Fusion Drive series; the features of these series are detailed below.

HDD + Optane. Combination of a traditional hard drive with an Intel Optane series SSD. For more information about the general features of this combination, see "HDD + SSD" above. Here, we note that “optains” differ from other SSD drives in a special three-dimensional structure of memory cells (3D Xpoint technology). This allows you to access data at the level of individual cells and do without some additional operations, which speeds up the speed and reduces latency, and also has a positive effect on memory life. The second difference is that Optane is usually used not as a separate drive, but as an auxiliary buffer (cache) for the main hard drive, designed to increase speed. Both drives are perceived by the system as a single device. The disadvantage of this type of SSD is traditional — a rather high cost; it is also worth noting that its superiority is most noticeable at relatively low loads (although it does not disappear completely with increasing load).

— HDD + Fusion Drive. A kind of HDD + SSD bundle (see above), used exclusively in Apple computers and optimized for the proprietary macOS operating system. However, it would be more correct to compare this option with the “HDD + Optane” combination (also described above): for example, both drives are perceived by the system as a single unit, and the Fusion Drive module is also used as a high-speed cache for the hard drive. However, there are also significant differences. Firstly, Fusion Drive has significant volumes and is used not only as a service buffer, but also as part of a full-fledged drive — for permanent data storage. Secondly, the total volume of the entire bundle approximately corresponds to the sum of the volumes of both drives (minus a couple of "service" gigabytes). This type of drive is expensive, but the efficiency and convenience are well worth the price.

— SSHD. The so-called hybrid drive: a device that combines a hard drive and a small SSD cache in one case. Some time ago, this solution was quite popular, but now it is almost never found, having been supplanted by a more practical option — various types of HDD + SSD.

— eMMC. A type of solid-state memory originally developed for portable gadgets such as smartphones and tablets. It differs from SSD, on the one hand, in lower cost and low power consumption, on the other hand, in relatively low speed and reliability. Because of this, this type of drive is used extremely rarely — in particular, in single models of microcomputers and thin clients (see "Type").

— HDD + eMMC. Combination of hard disk drive (HDD) and eMMC solid state module. These types of drives are described in detail above; here we note that this option is extremely rare, and in rather specific devices — monoblocks (see "Type") with a transformer function, where the screen is a removable tablet that can be used autonomously. In such a tablet, an eMMC module is usually installed, and a hard drive is placed in the stationary part. However, another option is also possible — a bundle similar to HDD + SSD (see above), where eMMC is used to reduce cost and/or power consumption.

— SSD + eMMC. Another combination of the two types of drives described above. It was used in single monoblocks and nettops — mainly to reduce the cost; Today, this variant is almost non-existent.

2nd drive capacity

The capacity of the optional storage installed in the PC.

This parameter is relevant primarily for configurations with different types of media. So, in HDD + SSD and HDD + eMMC bundles, the hard drive is considered the main drive, and this paragraph indicates the capacity of the solid-state module. In SSD + eMMC configurations, eMMC is considered the second drive — less capacious and performing an auxiliary function. There are PC models with two hard drives, but in such cases, the drives usually have the same volume, and it does not matter for them which one is considered the main one.

If we talk about specific numbers, then the volume up to 128 GB can be considered relatively small, and 128 GB or more is solid. For more information on volumes in general, see "Drive Capacity" above.

Connectors

In most desktop PCs, this assortment is determined both by connectors on the "motherboard" and on a discrete graphics card, among which VGA, DVI, HDMI output(there are models where HDMI 2 pcs), HDMI input, DisplayPort, miniDisplayPort. More details about them.

— VGA. He's D-Sub. Analogue video output with maximum resolution up to 1280x1024 and no audio support. It is rarely installed in modern devices, but it can be useful for connecting certain models of projectors and TVs, as well as outdated video equipment.

— DVI. Modern PCs can be equipped with both pure digital DVI-D and hybrid DVI-I; the latter also allows analogue connection, including work with VGA-devices through an adapter, and in analogue format has a resolution of 1280x1024. In digital DVI, this parameter can reach 1920x1200 in single-link mode (single link) and 2560x1600 in dual-link mode. The presence of a dual-channel mode must be specified separately.

— HDMI output. Digital output originally designed for HD content — high-definition video and multi-channel audio. The HDMI interface is almost mandatory for modern HD multimedia technology, and it is also extremely popular in computer monitors — so the presence of such an output on a PC provides ve...ry extensive features for connecting external screens and even high-end audio devices. Some devices may even have 2 HDMI outputs.

— HDMI input. Your PC has at least one HDMI input. See above for details on the interface itself; here we note that it is the inputs of this format that are found mainly in monoblocks (see "Type"). At a minimum, this allows you to use the monoblock's own display as a screen for another device (for example, as an external monitor for a laptop). However, there are other, more specific options for using the HDMI input — for example, recording an incoming video signal, or transferring (switching) it to one of the PC video outputs.
Both the HDMI inputs and outputs in modern PCs may correspond to different versions:
  • v 1.4. The earliest standard widely used today. Supports resolutions up to 4096x2160 and frame rates up to 120 fps (however, only at a resolution of 1920x1080 or lower), and can also be used to transmit 3D video. In addition to the original version 1.4, you can find improved v 1.4a and v 1.4b — in both cases, the improvements affected mainly the work with 3D.
  • v2.0. The standard, also known as HDMI UHD, was the first to introduce full support for UltraHD 4K, with frame rates up to 60 fps, as well as compatibility with a 21:9 aspect ratio. In addition, the number of simultaneously transmitted channels and audio streams has increased to 32 and 4, respectively. It is also worth noting that initially version 2.0 did not provide support for HDR, but it appeared in update v 2.0a; if this feature is important to you, it's ok to clarify which version 2.0 is provided in the PC, the original or the updated one.
  • v2.0b. The second update of the above v 2.0. The main update was the expansion of HDR capabilities, in particular, support for two new formats.
  • v2.1. It is also HDMI Ultra High Speed: the bandwidth has been increased to such an extent that it became possible to transfer 10K video at 120 fps (not to mention more modest resolutions) as well as work with extended colour schemes up to 16 bits. The latter may come in handy for some professional tasks. However, note that all the features of HDMI v 2.1 are available only when using cables designed for this standard.
— Display port. A digital media interface similar in many respects to HDMI, but mainly used in computer technology — in particular, it is widely used in Apple computers and monitors. One of the interesting features of this standard is the ability to work in the daisy chain format — connecting several screens to one port in series, transmitting its own signal to each of them (although this function is not technically available with all screens for this interface). DisplayPort is also on the market in several versions, the current ones are as follows:
  • v 1.2. The earliest widely used version (2010). However, already in this version, 3D compatibility and the daisy chain mode appeared. The maximum fully supported resolution when connecting a single monitor is 5K (30 fps), transmission up to 8K is possible with certain restrictions; a frame rate of 60 Hz is supported up to a resolution of 3840x2160, and 120 Hz — up to 2560x1600. And when using daisy chain, you can connect up to 2 2560x1600 screens at 60 frames per second or up to 4 1920x1200 screens at the same time. In addition to the original version 1.2, there is an improved v 1.2a, the main innovation of which is support for AMD FreeSync, a technology for synchronizing the monitor's frame rate with the signal from an AMD graphics card.
  • v 1.3. An update introduced in 2014. The increased bandwidth made it possible to provide full, without restrictions, support for 8K at 30 fps, as well as transmit 4K images at 120 fps, sufficient for 3D work. Resolutions in daisy chain mode have also increased — up to 4K (3840x2160) at 60 fps for two screens and 2560x1600 at the same frame rate for four. Of the specific innovations, it is worth mentioning the Dual Mode mode, which allows you to connect HDMI and DVI devices to such a connector through the simplest passive adapters.
  • v 1.4. The newest version widely used in modern PCs. Formally, the maximum connection speed has not increased compared to the previous version, but thanks to signal optimization, it became possible to work with 4K and 5K resolutions at 240 fps and with 8K at 120 fps. However for this, the connected screen must support DSC encoding technology — otherwise, the available resolutions will not differ from version 1.3. In addition, v 1.4 added support for a number of special features, including HDR10, and the maximum number of simultaneously transmitted audio channels increased to 32.
— miniDisplayPort. A smaller version of the DisplayPort connector described above, may also correspond to different versions (see above). Note that the same hardware connector is used in the Thunderbolt interface versions 1 and 2, and the graphic part of this interface is based on DisplayPort. Therefore, even some Thunderbolt monitors can be directly connected to miniDisplayPort (although it is desirable to clarify this possibility separately).

— COM port (RS-232). Serial port, originally used to connect dial-up modems and some peripherals, in particular, mice. However, today this interface is used as a service interface in various devices — TVs, projectors, network equipment (routers and switches), etc. Connecting to a PC via RS-232 allows you to control the operation parameters of an external device from a computer.

5.25" compartments

Number of 5.25" bays on the front of the PC.

One of the most popular ways to use such bays is to install DVD and Blu-ray drives, but they can also accommodate other components: “pockets” for removable HDDs and SSDs, card readers, and even specific devices like cooler control units. Accordingly, the more compartments, the more peripheral devices you can simultaneously install in your computer. However an abundance of 5.25 "peripherals is not often required in fact; on the other hand, it is recommended to install some types of devices not in a row, close to each other, but through a slot — for sufficient cooling efficiency. Therefore, most often the number of compartments of this type does not exceed 4 , but in some configurations it can be as high as 10.

mini-Jack (3.5 mm)

The presence of a mini-Jack connector (3.5 mm) on the front panel of the PC. More precisely, in ordinary desktop PCs, gaming systems and monoblocks (see "Type") there are most often two such connectors: one plays the role of an output for headphones, speakers, etc., the second plays the role of a microphone input. But in compact devices like some mini-Jack nettops, there can be only one — a universal port, in which you can turn on both headphones / speakers and a headset with one common plug for a microphone and “ears”.

Anyway, such connectors are closer to the user and are more convenient to connect than similar sound card outputs on the rear panel of the case.

USB 2.0

The number of full size USB 2.0 connectors provided on the front of the PC.

USB is the most popular modern interface for connecting peripherals. And the number of connectors is, accordingly, the number of devices that can be simultaneously connected to the front panel without the use of splitters. Specifically, version 2.0 was the most popular some time ago, but now it is considered obsolete, it is gradually being replaced by more advanced standards like USB 3.0 (3.1 gen1). However, USB 2.0 capabilities (data transfer rates up to 480 Mbps) are still sufficient for many peripheral devices, from keyboards and mice to printers. So this standard is still far from completely disappearing, and some PCs may have several of these ports on the front panel at once.

Separately, it is worth noting that similar connectors are most often available on the back of the case. However, the front panel is closer to the user, and the sockets on it are optimal for peripherals that need to be connected and disconnected frequently, such as flash drives.

PSU power

The power of the power supply installed in the PC.

Theoretically, if you buy a ready-to-use computer, the power of the block installed in it is guaranteed to be enough for the normal operation of the system. However, even in such cases, it's ok to pay attention to this parameter: other things being equal, a more powerful PSU provides an additional margin in case of high loads and emergency situations. And if the system is bought understaffed (for example, without RAM or a drive), or it is planned to be upgraded (especially with the installation of “gluttonous” components like a discrete graphics card), you should definitely clarify whether the PSU has enough capabilities for this. The power of the power supply should definitely not be lower than the power consumption of the system, and ideally it should exceed it by at least 100 – 150 W — again, in case of unforeseen situations.

Also, this parameter must be taken into account in some situations when catering — for example, when calculating the total load when connecting a computer to an uninterrupted power supply (UPS).
ETE GAME often compared
ETE Darkness PC often compared