GPU clock speed
The frequency of the graphics processor of the graphics card. As a general rule, the higher the frequency of the GPU, the higher the performance of the graphics card, but this parameter is not the only one — a lot also depends on the design features of the graphics card, in particular, the type and amount of video memory (see the relevant glossary items). As a result, it is not unusual for a model with a lower processor frequency to be more performant of two video cards. In addition, it should be noted that high-frequency processors also have high heat dissipation, which requires the use of powerful cooling systems.
Memory clock
The speed at which a video card can process data stored in its video memory. In fact, the indicator determines the maximum number of operations to receive or transmit data by a memory module per unit of time. This frequency is expressed in megahertz (MHz) – millions of operations per second. High video memory frequency helps improve performance when performing resource-intensive tasks such as texture processing, graphics rendering and other graphics operations. However, the parameter is by no means the only factor that influences the overall performance of the video card – it is important to take into account the GPU architecture, number of cores, core frequency and other characteristics.
HDMI version
HDMI interface version supported by the graphics card. For details about HDMI itself, see above, and its versions can be as follows:
— v.1.4. The earliest HDMI standard found in video cards; was introduced in 2009. Despite its “venerable age”, it has good capabilities: it supports 4K video (4096x2160) at a frame rate of 24 fps, Full HD (1920x1080) at a frame rate of up to 120 fps, and is also suitable for transmitting 3D video.
— v.1.4b. The second improvement of the above v.1.4. The first update, v.1.4a, introduced support for two additional 3D video formats; and in HDMI v.1.4b, mostly minor improvements and additions to v 1.4a specifications were implemented, almost imperceptible to the average user.
— v.2.0. Standard introduced in 2013 to replace HDMI v.1.4. Thanks to its full 4K support (up to 60 fps), it is also known as HDMI UHD. In addition, there is enough bandwidth for simultaneous transmission of up to 32 audio tracks and up to 4 separate audio streams, and the list of supported frame formats has been replenished with ultra-wide 21:9.
— v.2.0b. The second update of the HDMI 2.0 standard described above, which differs primarily in HDR support. However, HDR compatibility itself appeared in the first update, v.2.0a; and version 2.0b added the ability to work with HDR10 and HLG standards.
— v.2.1. The newest common HDMI standard released in 2017. Capable of providing a frame rate of 120 fps in ultra-high resolu...tion video signal — from 4K to 8K inclusive; some improvements related to the use of HDR were also provided. Note that all the features of HDMI v.2.1 are available only when using cables marked Ultra High Speed, although basic functions work through ordinary cables.
DisplayPort version
The version of the DisplayPort and/or miniDisplayPort interface used by the graphics card. For the interfaces themselves, see the relevant help items; here we recall that they differ only in the type of plug. So the list of versions for both cases is the same, it looks like this:
— v 1.2. The earliest widely used version (2010). However, already in this version, 3D compatibility and the daisy chain mode appeared. The maximum fully supported resolution when connecting a single monitor is 5K (30 fps), transmission up to 8K is possible with certain restrictions; a frame rate of 60 Hz is supported up to a resolution of 3840x2160, and 120 Hz — up to 2560x1600. And when using daisy chain, you can connect up to 2 2560x1600 screens at 60 frames per second or up to 4 1920x1200 screens at the same time. In addition to the original version 1.2, there is an improved v 1.2a, the main innovation of which was support for AMD FreeSync, a technology used in AMD video cards to synchronize the refresh rate of the monitor with the actual frame rate output by the video adapter.
— v 1.3. An update introduced in 2014. The increased bandwidth made it possible to provide full, without restrictions, support for 8K at 30 fps, as well as transmit 4K images at 120 fps, sufficient for 3D work. Resolutions in daisy chain mode have also increased — up to 4K (3840x2160) at 60 fps for two screens and 2560x1600 at the same frame rate for four. Of the specific innovations, it is worth me...ntioning the Dual Mode mode, which allows you to connect HDMI and DVI devices to such a connector through the simplest passive adapters.
— v 1.4.Version introduced in March 2016. Formally, the bandwidth has not increased compared to the previous version, but thanks to signal optimization, it became possible to work with 4K and 5K resolutions at 240 fps and with 8K at 120 fps. However for this, the connected screen must support DSC encoding technology — otherwise, the available resolutions will not differ from version 1.3. In addition, v 1.4 added support for a number of special features, including HDR10, and the maximum number of simultaneously transmitted audio channels increased to 32.
—v 1.4a. An update released in 2018 "quietly" — without even an official press release. The main innovation was the update of Display Stream Compression technology from version 1.2 to version 1.2a.
Additional power
Format of additional power required for the operation of the graphics card.
By itself, the PCI-E connector, which is standardly used to connect video cards, provides 75 watts of power. For many models, even quite performant ones, this is quite enough, and many modern video adapters do
without additional power. However, models
with additional power have become more widespread, especially among high-end solutions.
The simplest version of such a power supply is one
6-pin or
8-pin connector. A 6-pin connector can additionally provide up to 75 watts, an 8-pin connector can provide up to 150 watts. However, for high-end solutions, one connector is not enough, so there are models with
6 + 8 pin,
8 + 8 pin, and even
8 + 8 + 6 pin or
8 + 8 + 8 pin formats.And the new cards are completely
16-pin. Such power connectors have a total of 16 lines: 12 for current supply and 4 signal. The effective power threshold of the 16 pin connector is up to 600 watts. Connection to it can be done through a 3×8 pin adapter.
Note that it is theoretically possible to connect a 6-pin power supply to an 8-pin connector and vice versa, even corresponding adapters are availa
...ble for this. However, in fact, the possibility of such a connection should be clarified separately, and such tricks should be used only in extreme cases, when other options are not available.Minimum PSU recommendation
The smallest power supply recommended for a computer with this graphics card.
This parameter, usually, is much higher than the power consumption of the graphics card itself. This is natural — after all, the PSU must provide electricity to the entire system, not just the video adapter. At the same time, the higher the power of the graphics card, the inevitably higher the power consumption of the PC as a whole. Moreover, this is due not only to the “voracity” of the graphics adapter itself, but also to the consumption of other PC components: a high-end graphics card, usually, is combined with an equally powerful (and energy-intensive) system.
With this in mind, manufacturers indicate the minimum recommended power supply. Of course, such recommendations are not mandatory; however, when using a PSU with a power lower than the recommended one, the probability of malfunctions increases significantly — to the point that even a very limited system may simply “not start”.
Length
The total length of the graphics card.
In this case, the length means the size of the device from the plate with connectors (which is attached to the back wall of the system unit) to the opposite side. The plate itself and the outwardly protruding connectors are usually not taken into account.
Data on the length of the graphics card is needed primarily in order to assess whether there is enough space for it in a particular case. In addition, longer boards, usually, have more advanced characteristics (although there is no hard dependence here, and video adapters of similar class may have different lengths). As for specific values, the most compact solutions nowadays have a size of
150 – 200 mm or
less ; an indicator of
200 – 250 mm can still be considered relatively small,
250 – 290 mm — medium, and many models (mostly advanced) have a length
of more than 290 mm.