Possible measurements
Types of sports and medical data collected by the gadget (plus some features of a similar purpose, such as
sleep tracking,
smart alarms,
stress levels and
women's calendar). Note that the features from this list can be found not only in specialized fitness trackers (see "Type"), but also in more traditional devices like smartwatches. Here are the most popular options:
—
Pulse rate. Heart rate is one of the most important physiological parameters of a person. So that sports training is as effective as possible, the heart rate must be in a certain range (the specific value depends on the purpose of the training and the personal data of the user). And for some illnesses and treatments, a faster or slower heart rate can be an important signal, including a warning of danger.
—
Pressure (tonometer). A sensor that measures the user's blood pressure. Note that the accuracy of such a sensor is usually quite low, the measurement error can be 10% or even more; so it will not replace a full-fledged medical tonometer. On the other hand, a gadget with this feature is quite capable of detecting a critical increase or decrease in pressure, which will allow you to take the necessary measures in a timely manner.
—
ECG. A sen
...sor that allows you to get detailed data about the work of the user's heart. Note that such a sensor is not a full-fledged electrocardiograph — in fact, it is an advanced type of heart rate monitor that can track the features of the heart rhythm. However, even this is enough to detect some dangerous phenomena — for example, atrial fibrillation, which at first is imperceptible to a person — and take appropriate measures in time.
— The blood oxygen. A sensor (the so-called pulse oximeter) that determines the saturation of the blood with oxygen (saturation); at the same time, the measurement is carried out by a non-invasive method — without punctures and other damage to the skin. Like most medical sensors in wearable gadgets, it is not accurate and is not a full-fledged medical device, but it is quite capable of responding to a critical decrease in the level of oxygen in the blood. It is believed that the presence of a pulse oximeter is relevant primarily for certain diseases, when saturation may decrease due to the disease itself or the characteristics of the treatment being taken. However, this feature can also be useful for quite healthy users who often travel at high altitudes — primarily climbers and aeronauts.
— Body temperature. The presence of a sensor for measuring temperature allows you to take measurements without the use of thermometers. Naturally, errors can occur, so a slight deviation from the norm may not be determined, but the device will easily fix a significant increase in temperature.
— T° of the environment. Even though smartwatches are worn on the body, the built-in sensors in them are usually designed to measure the ambient temperature. This information can be useful both for a general assessment of the surrounding conditions, and for specific purposes — in particular, weather forecasting. It is not uncommon for watches with this feature to also have a barometer (see "Navigation").
— Number of steps. The traditional pedometer is a feature for counting the number of steps taken by the user. These measurements usually use data from the accelerometer, and the results are quite accurate: most modern accelerometers are well calibrated and are quite capable of distinguishing tremors during steps from hand waves and other extraneous movements. The exception is trips in land transport: many wearable gadgets perceive shaking as steps, which should be taken into account when evaluating the results.
— Distance travelled. Measurement of the total distance traveled by the user. For this, either data from a pedometer or a GPS module are usually used (see "Navigation"); each option has its own merits. So, the pedometer is cheaper, it can be used even in rooms without windows, where the signal from satellites does not reach, and on simulators like treadmills, where the user does not move relative to the ground. GPS, in turn, gives higher accuracy, especially over long distances, and is not prone to false positives in vehicles. In some advanced gadgets, these methods can be combined — this is not cheap, but it allows you to combine the advantages of both options and achieve maximum accuracy.
— Movement speed. Determining the speed of the user's movement. As with distance travelled, measurement can be done in a variety of ways; see above for more details. Also note here that many gadgets with this feature are able not only to determine the current speed, but also to constantly record its value and display various indicators: the maximum achieved speed, the average value for training, etc.
— Energy spent (calories). Measurement of the number of calories burned by the user in the process of movement. These data are rather approximate, as they are calculated by indirect parameters (speed and range of movement, personal specs of a person, etc.). However, even this accuracy is quite enough to determine the overall effectiveness of training.
— The amount of fat burned. Measuring the amount of fat burned per workout. As in the case of calories (see above), the result of such measurements is quite approximate. However, in fact, absolute accuracy is not required, and fat loss data can be a powerful motivator.
— Activity time. A measurement of the total time during which the user is actively moving. In many models, such metering may provide additional options, such as fixing several periods of activity with breaks between them and determining the ratio between the time of movement and the time of rest.
— Smart alarm. An alarm clock that monitors the user's sleep phases and gives a signal to wake up at the optimal time for this. Human sleep consists of alternating phases, and waking up in the unfortunate phase creates a feeling of lethargy and fatigue, even if there was enough time to sleep. A smart alarm clock avoids such situations; its work is based on tracking the pulse, breathing rate and other parameters that differ depending on the phase of sleep. Note that the deviation of the signal from the set time can be up to half an hour, but this is usually a deviation towards an earlier rise. As a result, the risk of being late with a smart alarm clock is close to zero, and the lack of sleep time is compensated by the optimal moment of awakening.
— Sleep tracking. Sleep quality assessment is based on data from on-board sensors of fitness trackers or smartwatches. In particular, the heart rate monitor controls the number of contractions of the heart muscle, the accelerometer controls the user's movements. A blood oxygen sensor, if available on the wearable, improves the accuracy of sleep quality data collection. According to the readings of the sensors, the moments of entering and exiting the deep sleep phase are recorded. It is during this period that the restoration of the nervous system and the accumulation of energy for the coming day take place. In deep sleep, a person can completely reboot and gain strength, while in REM sleep, brain activity practically does not differ from the state of wakefulness. The sleep quality analysis feature helps you determine the best time to go to sleep and provides personalized recommendations to improve your night's sleep.
— The level of stress. The level of stress of the body allows you to evaluate the metric that determines the variability of the heartbeat — the difference in time between successive contractions of the heart muscle. Respiration rate, maximum oxygen consumption and excess oxygen consumption after exercise are also taken into account. The stress level score gives a clear picture of the user's experience during the day, however, the value of this parameter is in determining the most optimal body regimen for training. A high heart rate variability usually indicates you are in good shape for playing sports, while a low one can indicate fatigue, dehydration, or feeling unwell. All this directly affects the ability to train effectively. There are no clear units for measuring the level of stress — in smartwatches, the parameter is usually shown as a scale from 0 to 100, often indicating the number of hours the body is under stress and the time it takes to recover to a normal state.
— Women's calendar. The tool for tracking the menstrual cycle keeps abreast of the events of the expected dates of the menstrual period, allows you to determine the most favorable days for conception, helps to notice alarming symptoms in time and prevent many diseases in case of cycle disorders. Based on your total cycle length, the device calculates a predicted date for your next period. The women's calendar records cycle dates, fertility windows, and the day of ovulation. By adding your own notes to it, you can track fluctuations in sleep, appetite, fitness, mood changes and predict well-being for a particular day.
In addition to those described above, more specific types of measurements can be found in modern wearable gadgets.Touch screen
The presence of a touch screen in a gadget — like those used in smartphones and tablets. Such a screen provides additional convenience: many features are easier to control with touches and gestures on the display than with buttons and other hardware. On the other hand, the
touch screen significantly affects the cost of the device compared to alternatives.
Type
The type of display installed in the watch/bracelet.
—
Colour. Such displays are often found in classic smartwatches and are almost mandatory for watch phones (see "Type"). They allow you to display a wide variety of types of information — not only numbers or indicators, but also pictures, videos, web pages, etc. Among the shortcomings of colour displays in this case are high power consumption (which negatively affects the battery life of the device), as well as a rather high cost.
—
Monochrome. There are two types of screens in this category. The first is single-colour displays, like those sometimes found on miniature MP3 players. They are significantly inferior in versatility to full-colour versions and can display only text and simple graphics, but they are cheaper and consume less power. This option is found among fitness trackers (see "Type"). Another variety of "monochrome" is e-ink, "electronic paper", known primarily from electronic books. Such displays can even be used in smartwatches — in addition to the actual colour, they are inferior to the colour versions only in the refresh rate, while consuming much less energy. The main disadvantage of e-ink is the rather high cost.
— Is absent. The complete
absence of a display is typical primarily for fitness trackers (see "Type"): the main purpose of such accessories is to collect inform
...ation, and other methods are often enough for notifications — the simplest light indicators, sound signals, vibration, etc. Another specific type of non-display device is the smartwatch in the form of a conventional "hand watch" supplemented with indicators on the dial and/or other means of notification.Size
The size of the display installed in the gadget; for round screens, respectively, the diameter is indicated.
A larger screen, on the one hand, is more convenient to use, on the other hand, it significantly affects the dimensions of the entire device, which is especially critical for wearable gadgets. Therefore, manufacturers choose the display size in accordance with the purpose and functionality of each specific model — so that there is enough space on the screen and the device itself is not too bulky.
It is also worth mentioning that screens with a similar size may have different aspect ratios. For example, traditional smartwatches are usually equipped with square or round panels, while in fitness trackers, screens are often made elongated in height.
Screen resolution
Screen size in dots (pixels) horizontally and vertically. In general, this is one of the indicators that determine the image quality: the higher the resolution, the clearer and smoother the picture on the screen (with the same size), the less noticeable are the individual dots. On the other hand, an increase in the number of pixels affects the cost of displays, their power consumption and requirements for a hardware platform (more powerful hardware is required, which itself will cost more). In addition, the specifics of using smartwatches is such that there is simply no need to install high-resolution screens in them. Therefore, modern wrist accessories use displays with a relatively low resolution: for example, 320x320 with a size of about 1.6" is considered quite sufficient even for premium watches.
PPI
The density of dots on the screen of the gadget, namely, the number of pixels that are on each inch of the panel vertically or horizontally.
The higher the PPI, the higher the detail of the screen, the clearer and smoother the image is. On the other hand, this indicator affects the price accordingly. Therefore, the higher the density of points, the more advanced, usually, this gadget is in terms of general capabilities. However, when choosing a screen, manufacturers take into account the general purpose and functionality of the device; so that even a small number of PPIs usually does not interfere with comfortable use.
CPU frequency
The clock speed of the processor (CPU) installed in the gadget.
Theoretically, a high clock speed has a positive effect on speed and performance; however, in fact, this parameter has a purely reference and promotional value. This is due to the fact that the real capabilities of the CPU depend on a number of other factors, and the overall performance of the system also depends on the properties of the rest of the hardware. In addition, manufacturers select processors in such a way that their performance is guaranteed to be sufficient, taking into account the planned specialization and functionality of the gadget. Therefore, when choosing this parameter, you can not pay much attention.
Battery capacity
The capacity of the battery that is installed in the gadget.
Theoretically, the higher the capacity, the longer the battery can work on a single charge. However, in fact, the battery life of the gadget also depends on its power consumption, and it is determined by the specs of the display and the hardware. Therefore, only models of the same type with very similar specs can be compared in terms of battery capacity; and for an accurate assessment of battery life, it is better to focus on the directly claimed operating time in one mode or another (see below).
It is also worth mentioning that high-capacity batteries inevitably turn out to be quite heavy and bulky. So the capacity of batteries installed in wearable gadgets is also greatly limited by size and weight.
Operating time (normal mode)
The time that the gadget can work on one battery charge (or the supplied battery) in normal use.
Normal mode, as a rule, means working with a relatively low load. At this time, the display can display some data, and basic functions can also work (counting steps, periodically checking heart rate, etc.), but in any case, power consumption is low. Therefore, the operating time in normal mode can be quite impressive, up to
several weeks, or even months. However, when choosing, it doesn’t hurt to also pay attention to the stated time in active mode (see below) — especially if a long operating time is critical, or you plan to use the gadget intensively. The actual autonomy of the device will most likely be somewhere in between these two values, depending on the actual load. If only the time in normal mode is indicated for the gadget, you should choose with a certain reserve.