Dark mode
USA
Catalog   /   Camping & Fishing   /   Fishing   /   Fish Finders

Comparison Garmin Striker Plus 9sv vs Lowrance Elite-9 Ti

Add to comparison
Garmin Striker Plus 9sv
Lowrance Elite-9 Ti
Garmin Striker Plus 9svLowrance Elite-9 Ti
Outdated Product
from $34.99 
Outdated Product
TOP sellers
Main
High scanning power. Large touch screen. Wireless modules Wi-Fi, Bluetooth and GPS. Bottom and side scan. NMEA interface support. Accurate navigation.
The screen does not support multi-touch.
Typefish finder-chartplotterfish finder-chartplotter
Specs
Scan depth488 m1524 m
Number of beams of radiation22
Number of frequencies65
Radiation frequency50/83/200/455/800 kHz
Total radiation angle120 °
Emitter power500 W500 W
CHIRP Technology
Side scan
Bottom scan
Digital data processing
Display specs
Display
9 "
 
800x480 px
colour
backlight
9 "
touch
800x480 px
colour
backlight
Features
Functions
Sound alarm
Determination of the distance to the fish
Indication of symbols in the form of fish
Real time fish display
Quick screen update
Auto-change depth scale
Depth display range
Bottom density determination
Water temperature indicator
Speed indication
Distance display
Sound alarm
Determination of the distance to the fish
Indication of symbols in the form of fish
Real time fish display
Quick screen update
Auto-change depth scale
Depth display range
Bottom density determination
Water temperature indicator
Speed indication
Distance display
Connection interfaces
 
 
 
Wi-Fi
NMEA
output for external GPS antenna
Specs of the chartplotter
GPS module
Memory card slot
Base map
Adding new maps
Waypoints3000
Number of routes100
Number of points in the route10000
General
Dust and water protection
Power source10 - 17 V
Dimensions282x165x60 mm285x175x110 mm
Weight1100 g
Added to E-Catalogmarch 2018april 2017

Scan depth

the maximum depth at which the sonar locator (see "Type") is able to operate effectively — in other words, how deep underwater the device is able to "see".

It is worth choosing an echo sounder according to this parameter, taking into account the actual depths at which it is planned to be used. Of course, this does not place a certain margin, but within reasonable limits (15-20%, less). For example, it hardly makes sense to specially take a model with a scanning depth of 200 m for a lake with pits of 30-40 m — such devices are expensive, while there will simply be nowhere to realize their full potential, and a powerful signal can also scare away the fish. But for marine or oceanic applications, a depth of a kilometer or more may be required; the most advanced echo sounders are quite capable of providing it.

Number of frequencies

The number of individual radiation frequencies that can be operated by a device with echo sounding function (see "Type").

The features of the frequencies themselves are described in detail below, but here we note that different models may provide different options for distributing frequencies over individual beams (see "Number of radiation beams"). So, in some devices, each beam has its own frequency, in others, individual emitters can be switched, choosing the best option depending on the characteristics of the situation. In general, more frequencies indicate greater versatility, but it significantly affects the price.

Radiation frequency

The frequency(s) of radiation at which the device with the echo sounder function is capable of operating (see "Type").

The higher the frequency, the better the resolution and noise immunity of the device, the better it is suitable for working at high speeds, but the range and coverage suffer. Low-frequency (up to 200 kHz) sensors, on the contrary, "reach" deep and cover a wide angle, but are sensitive to interference and do not work well with fine terrain details and small objects. Accordingly, the first option is considered optimal for shallow depths and high-precision topographic measurements, while the second option is for deep water bodies, as well as for searching for fish and other tasks that require wide coverage.

Models with several radiation beams (see “Number of radiation beams”) often provide different frequencies for individual beams, which allows you to combine the advantages of different options in one device and compensate for their disadvantages.

Total radiation angle

The angle covered during operation by the transducer of the echo sounder (or an instrument with such a function, see "Type").

Technically, the wider the angle, the better the echo sounder is suitable for finding fish and other underwater objects, because. a large coverage area reduces the likelihood of missing prey. On the other hand, to accurately determine the depth, the beam must be as narrow as possible. This is due to the fact that the depth is determined by the maximum protruding point that fell under the beam; thus, if the size of the hole at the bottom is smaller than the spot from the beam, the device simply will not notice this hole. The smaller the angle (and, accordingly, the projection of the beam onto the bottom) — the less likely this phenomenon is.

However, it should be taken into account that all of the above is unambiguously true only for single-beam echo sounders (see "Number of radiation beams"). But multibeam models, usually, combine beams of different widths, thus compensating for the shortcomings of narrow and wide angles. In them, the total radiation angle describes only the dimensions of the space covered by the device.

Digital data processing

The presence of a digital data processing system (DSP) in the design of the echo sounder.

Digital processing allows you to separate the received signal into extraneous noise and useful data. Of course, such a division is not 100% reliable; however, the level of noise in the filtered signal is still significantly reduced, and the screen receives a maximum of useful information and a minimum of extraneous information. The disadvantage of this function is traditional: echo sounders with DSP are somewhat more expensive than usual ones.

Display

— Screen size. Diagonal screen size in inches. The larger the screen, the more information can be displayed on it and the more detailed this information can be. On the other hand, this parameter noticeably affects the dimensions of the device, and large screens are expensive, especially since you need the appropriate resolution for normal image quality (see below).

Touch. The presence of a sensor in the design of the display. This feature allows you to control the device by touching the icons on the screen — similar to how it is done in smartphones and tablets. Touch control provides more options than the classic one, using buttons and switches, besides it is more visual — however, such devices are more expensive.

— Display resolution. Display size in dots (pixels) horizontally and vertically. The higher the resolution, the more detailed image the screen is able to produce, the smaller objects can be clearly displayed on it and the more comfortable viewing. At the same time, the specificity of echo sounders is such that too high resolution is not required even for high-end models: for example, modest by the standards of smartphones or tablets 640x480 with a 5" screen are considered quite sufficient even for an advanced device.

— Colour. The ability of a screen to display colours. In this case, the simplest division is used:

Monochrome.... Displays that display information only in shades of one colour. Theoretically, the main colour can be any, but in this case, the vast majority of monochrome screens are black and white. Their advantages are low cost and energy consumption, as well as good visibility in the sun; at the same time, such an image allows you to work with quite a variety of types of data, which is enough even for very advanced echo sounders (see "Type"). However, this variety is not as wide as for colour displays, as a result, for chartplotters (see ibid.), such an image is not suitable — if it is impossible to display different colours, some of the important information on the maps is lost.

Coloured. Screens capable of working with multiple colours. The variety of colours can be quite small, but the image still turns out to be more informative than black and white: different colours can indicate different depths on the map, water temperature changes, etc. Due to this, this type of display is found in all types of navigation devices (see above). Its main disadvantage can be called a higher cost than that of monochrome screens.

— Backlight. The screen has its own backlight system. This feature makes the display independent of ambient light and allows you to see the information on it even in complete darkness. At the same time, the backlight increases power consumption, which is important during long-term operation from an autonomous source (for example, a boat battery). Therefore, it can be turned off.

Connection interfaces

Ethernet. This standard is also known as LAN or RJ-45. Its original purpose is the construction of general-purpose wired computer networks; however, Ethernet can also be used in special networks — including used by navigation equipment. Note that this interface is technically capable of providing a higher data transfer rate than NMEA, so it can be used for tasks that require the transfer of a large amount of data — for example, connecting to the Internet via a satellite module.

NMEA. Abbreviation for "National Marine Electronics Association", "National Marine Electronics Association". This interface is used to interconnect various "marine" electronics, mainly navigation — echo sounders, chartplotters, radars, VHF radios, gyrocompasses, sensors in engines, etc. Accordingly, its support allows you to connect the device with other specialized devices and sensors. Note that there are several versions of NMEA. The most popular at the moment is NMEA 0183, it is this standard that is supported by most special equipment. A more advanced version is NMEA 2000, which is not yet widely used. More information about the different versions and their compatibility can be found in special sources.

Output for external GPS antenna. This function can occur regardless of whether the device has a built-in GPS receiver (see above). If such a receiver is not available,...then the ability to connect an external antenna (more precisely, a whole GPS module) is almost mandatory for devices with the chartplotter function (see "Type") — otherwise they will not be able to effectively perform their tasks. However, for models with their own receiver, an external antenna may come in handy — it is usually more sensitive than the internal one and allows you to more accurately determine the location of the device, especially in difficult conditions (atmospheric interference, navigation through narrow fjords, etc.). At the same time, such an antenna can be chosen at will, choosing the best option for price and functionality. One has only to take into account that different types of connectors can be used to connect external equipment — therefore, before buying an antenna, it would be useful to clarify its compatibility with a specific model of the device.

— Wi-Fi. A wireless interface, originally designed to connect to local computer networks, and more recently also used to directly connect various devices to each other. It can be used in echo sounders/chartplotters for various purposes — both for integration into the onboard network and for connecting external equipment (wireless sensor, remote control tablet, etc.); specific functionality depends on the model.

— Bluetooth. A wireless interface used to connect different devices to each other. The Bluetooth standard includes many separate protocols for different types of data and formats of operation; in fact, the possibilities of this connection in each particular case depend on what protocols the echo sounder / chartplotter supports. The most common features include, in particular, connecting wireless sensors (see above), exchanging data with a tablet, laptop or other gadget (for example, to download new maps and routes), connecting wireless headsets to work with sound alarms, etc. P.

— Video input. Connector for connecting an external video signal to the echo sounder / chartplotter. This feature allows you to use the display to display a "picture" from another device, such as an external camera. Note that video inputs are found mainly in models with large colour displays — without such a display, the whole point of this function would be lost.

— Video output. Connector for video signal output from echo sounder/chart plotter. This function allows you to duplicate the image from the display of the device on an external large screen — for example, the main monitor of the on-board computer — which makes viewing more convenient.

Memory card slot

The presence in the design of the device slot for working with removable memory cards. Some models may have more than one of these slots.

Memory cards are very popular in modern portable electronics due to their lightness, compactness and relatively low cost. In chartplotters, such media can be used both to expand the device's own built-in memory, and to exchange data with other equipment — for example, rewriting tracks on a laptop or downloading updated navigation maps from it (see below). However, it is worth considering that there are many varieties of memory cards, in most cases incompatible with each other. On the other hand, chartplotters usually use a common standard media, most commonly SD or microSD.

Base map

The presence of a base card in the delivery set of the device.

The base map is a pre-installed map that is stored in the device's memory. Thus, a chartplotter in this configuration can (theoretically) be used out of the box without installing additional software. In fact, although basemaps may vary by model, manufacturer, and region, they are often small scale, displaying only the most general (often outdated) information, and unsuitable for professional use. Therefore, this function, usually, does not eliminate the need to install additional detailed maps (see below).
Garmin Striker Plus 9sv often compared
Lowrance Elite-9 Ti often compared