USA
Catalog   /   Computing   /   Desktop PCs

Comparison ETE GAME BASE vs Berloga PC Darth Vader

Add to comparison
ETE GAME (BASE)
Berloga PC (Darth Vader)
ETE GAME BASEBerloga PC Darth Vader
Outdated ProductOutdated Product
TOP sellers
Product typegaminggaming
Form factorMidi Tower
Midi Tower /Frontier Darth Vader/
CPU
ChipsetAMD A320
AMD A320 /ASRock A320M-DVS R4.0/
Typedesktopdesktop
SeriesRyzen 3Ryzen 3
Model12001200
Code nameSummit Ridge (Zen)
Cores44
Threads44
Speed3.1 GHz3.1 GHz
TurboBoost / TurboCore3.4 GHz3.4 GHz
Passmark CPU Mark6354 score(s)
Geekbench 413774 score(s)
Cinebench R15480 score(s)
Memory
RAM8 GB
16 GB /Hynix HMA82GU6JJR8N-VK/
Memory typeDDR4DDR4
Speed2666 MHz2666 MHz
Number of slots22
Max. memory support32 GB32 GB
Graphics card
Graphics card typededicateddedicated
Graphics card modelGeForce GTX 1650
Radeon RX 470 /SAPPHIRE NITRO+ RX470/
Graphics memory4 GB4 GB
Memory typeGDDR5GDDR5
Storage
Drive typeHDDHDD+SSD
Drive capacity1000 GB
500 GB /Seagate Pipeline HD.2/
2nd drive capacity
120 GB /Team L3 EVO/
Back panel
Connectors
 
 
 
 
VGA
DVI
HDMI output
DisplayPort
PS/21
USB 2.02
USB 3.2 gen14
Front Panel
Optical driveis absentis absent
5.25" compartments1
mini-Jack (3.5 mm)
USB 2.022
USB 3.2 gen111
Multimedia
LAN (RJ-45)1 Gbps1 Gbps
LAN controllerRealtek RTL8111GR
Wi-Fiis absentis absent
Sound7.17.1
AudiochipRealtek ALC887
General
PSU power500 W
500 W /GameMax GM-500B/
Preinstalled OSno OSno OS
Materialsteelsteel
Dimensions (HxWxD)410x175x370 mm
Color
Added to E-Catalogjanuary 2020october 2019

Code name

The code name for CPU that the PC is equipped with.

This parameter characterizes, first of all, the generation to which the processor belongs, and the microarchitecture used in it. At the same time, chips with different code names can belong to the same microarchitecture/generation; in such cases, they differ in other parameters — general positioning, belonging to certain series (see above), the presence / absence of certain specific functions, etc.

Nowadays, chips with the following code names are relevant among Intel processors: Coffee Lake (8th generation), Coffee Lake (9th generation), Comet Lake (10th generation) and Rocket Lake (11th generation), Alder Lake (12th generation), Raptor Lake (13th generation), Raptor Lake-S (14th generation). For AMD, the list looks like this: Zen+ Picasso (3rd gen), Zen2 Matisse (3rd gen), Zen2 Renoir (4th gen), Zen 3 Cezanne (5th gen), Zen 3 Vermeer (5th gen), Zen 4 Raphael (6th gen).

Passmark CPU Mark

The result shown by the PC processor in the test (benchmark) Passmark CPU Mark.

Passmark CPU Mark is a comprehensive test that allows you to evaluate CPU performance in various modes and with a different number of processed threads. The results are displayed in points; the more points, the higher the overall performance of the processor. For comparison: as of 2020, in low-cost solutions, the results are measured in hundreds of points, in mid-range models they range from 800 – 900 to more than 6,000 points, and individual top-end chips are capable of showing 40,000 points or more.

Geekbench 4

The result shown by the PC processor in the test (benchmark) Geekbench 4.

Geekbench 4 is a comprehensive cross-platform test that allows, among other things, to determine the efficiency of the processor in various modes. At the same time, according to the developers, the verification modes are as close as possible to various real tasks that the processor has to solve. The result is indicated in points: the more points — the more powerful the CPU, while the difference in numbers corresponds to the actual difference in performance ("twice the result — twice the power").

Note that the benchmark in Geekbench 4 is the Intel Core i7-6600U processor with a clock frequency of 2.6 GHz. Its power is estimated at 4000 points, and the performance of other tested CPUs is already compared with it.

Cinebench R15

The result shown by the PC processor in the test (benchmark) Cinebench R15.

Cinebench is a test designed to test the capabilities of the processor and graphics card. The creator of this benchmark, Maxon, is also known as the developer of the Cinema 4D 3D editor; this determined the features of testing. So, in addition to purely mathematical tasks, when using Cinebench R15, the processor is loaded with processing high-quality three-dimensional graphics. Another interesting feature is the extensive support for multithreading — the test allows you to fully check the power of chips that process up to 256 threads at a time.

Traditionally, for CPU benchmarks, the test results are indicated in points (more precisely, points — PTS). The more points scored by the CPU, the higher its performance.

RAM

The amount of random access memory (RAM, or RAM) that came with your computer.

The overall performance of the PC directly depends on this parameter: ceteris paribus, more RAM speeds up work, allows you to cope with more resource-intensive tasks, and facilitates the simultaneous execution of numerous processes. As for specific numbers, the minimum volume required for the stable operation of a general-purpose PC nowadays is 4 GB. Smaller amounts are enough for microcomputers and thin clients, and at least 8 GB is installed in gaming systems, on the contrary. 16 GB and even more so 32 GB are already very solid volumes, and in the most powerful and performant systems there are values \u200b\u200bof 64 GB and even more. Also on the market you can find configurations without RAM at all — for such a device, the user can choose the amount of memory at his discretion; for a number of reasons, this configuration is especially popular in nettops.

Note that many modern PCs allow for an increase in the amount of RAM, so it does not always make sense to purchase an expensive device with a large amount of "RAM" — sometimes it is more reasonable to start with a simpler model and expand it if necessary. The possibility of upgrading in such cases should be clarified separately.

Graphics card model

The main manufacturers of video cards nowadays are AMD, NVIDIA and Intel, and each has its own specifics. NVIDIA produces primarily discrete solutions; Among the most common are the GeForce MX1xx, GeForce MX3xx, GeForce GTX 10xx series (in particular GTX 1050, GTX 1050 Ti and GTX 1060), GeForce GTX 16xx, GeForce RTX 20xx, GeForce RTX 30xx( GeForce RTX 3060, GeForce RTX 3060 Ti, GeForce RTX 3070, GeForce RTX 3070 Ti, GeForce RTX 3080, GeForce RTX 3080 Ti, GeForce RTX 3090, GeForce RTX 3090 Ti), GeForce RTX 4060 , GeForce RTX 4060 Ti, GeForce RTX 4070, GeForce RTX 4070 SUPER, GeForce RTX 4070 Ti, GeForce RTX 4070 Ti SUPER, Ge Force RTX 4080, GeForce RTX 4080 SUPER, GeForce RTX 4090 and separate Quadro series. AMD offers both discrete and integrated graphics - including the popular Radeon RX 500, Radeon RX 5000, Radeon RX 6000, Radeon RX 7000 and AMD Radeon Pro series. And Intel deals exclusively with modules integrated into processors of its own production - these can be HD Graphics, UHD Graphics and Iris.

Note that many configurations with discrete graphics also have an integrated graphics module; in such cases, the name of the discrete video card is indicated as more advanced.

Drive type

The type of storage device that is installed in the computer.

Note that many PCs allow you to add a complete drive or even completely replace it, but it is more convenient to buy a suitable configuration initially and not bother with re-equipment. In terms of types, traditional hard disk drives ( HDD) are increasingly losing ground to SSD solid-state modules nowadays. In addition, HDD + SSD combinations are quite popular (including those using advanced Intel Optane and Fusion Drive technologies). But solutions such as SSHD and eMMC have practically fallen into disuse. Let's take a closer look at these options:

— HDD. Classic hard disk. The key advantage of such drives is their low cost per unit of volume — this allows you to create capacious and at the same time inexpensive storage. On the other hand, HDDs are noticeably inferior to SSDs in terms of speed, and they also do not tolerate shocks and shocks. Thus, this type of media is less and less used in its pure form — it is much more common to find a combination of a hard drive with an SSD module (see below).

— SSD. Solid state drives based on flash memory. With the same volume, an SSD is much more expensive than an HDD, but this is justified by a number of advantages. First, such drives are much faster than hard drives; specif...ic performance may be different (depending on the type of memory, connection interface, etc.), however, even inexpensive SSDs outperform advanced HDDs in this indicator. Secondly, solid-state memory has no moving parts, which offers several advantages at once: lightness, compactness, shock insensitivity and low power consumption. And the cost of such memory is constantly decreasing as technology advances. So more and more modern PCs are equipped with just such drives, and these can be configurations of any level — from low-cost to top ones.

— HDD+SSD. The presence in one system of two drives at once — HDD and SSD. Each of these varieties is described in more detail above; and their combination in one system allows you to combine the advantages and partially compensate for the shortcomings. For example, an SSD (which usually has a fairly small capacity) can store system files and other data for which speed of access is important (for example, work applications); and HDD is well suited for large volumes of information that do not require particularly high speed (a typical case is video files and other multimedia content). In addition, the solid-state module can be used not as a separate storage, but as an intermediate cache to speed up the hard drive; however, this usually requires special software settings (whereas the "two separate drives" mode is most often available by default).
We also emphasize that in this case we are talking about “ordinary” SSD modules that do not belong to the Optane and Fusion Drive series; the features of these series are detailed below.

HDD + Optane. Combination of a traditional hard drive with an Intel Optane series SSD. For more information about the general features of this combination, see "HDD + SSD" above. Here, we note that “optains” differ from other SSD drives in a special three-dimensional structure of memory cells (3D Xpoint technology). This allows you to access data at the level of individual cells and do without some additional operations, which speeds up the speed and reduces latency, and also has a positive effect on memory life. The second difference is that Optane is usually used not as a separate drive, but as an auxiliary buffer (cache) for the main hard drive, designed to increase speed. Both drives are perceived by the system as a single device. The disadvantage of this type of SSD is traditional — a rather high cost; it is also worth noting that its superiority is most noticeable at relatively low loads (although it does not disappear completely with increasing load).

— HDD + Fusion Drive. A kind of HDD + SSD bundle (see above), used exclusively in Apple computers and optimized for the proprietary macOS operating system. However, it would be more correct to compare this option with the “HDD + Optane” combination (also described above): for example, both drives are perceived by the system as a single unit, and the Fusion Drive module is also used as a high-speed cache for the hard drive. However, there are also significant differences. Firstly, Fusion Drive has significant volumes and is used not only as a service buffer, but also as part of a full-fledged drive — for permanent data storage. Secondly, the total volume of the entire bundle approximately corresponds to the sum of the volumes of both drives (minus a couple of "service" gigabytes). This type of drive is expensive, but the efficiency and convenience are well worth the price.

— SSHD. The so-called hybrid drive: a device that combines a hard drive and a small SSD cache in one case. Some time ago, this solution was quite popular, but now it is almost never found, having been supplanted by a more practical option — various types of HDD + SSD.

— eMMC. A type of solid-state memory originally developed for portable gadgets such as smartphones and tablets. It differs from SSD, on the one hand, in lower cost and low power consumption, on the other hand, in relatively low speed and reliability. Because of this, this type of drive is used extremely rarely — in particular, in single models of microcomputers and thin clients (see "Type").

— HDD + eMMC. Combination of hard disk drive (HDD) and eMMC solid state module. These types of drives are described in detail above; here we note that this option is extremely rare, and in rather specific devices — monoblocks (see "Type") with a transformer function, where the screen is a removable tablet that can be used autonomously. In such a tablet, an eMMC module is usually installed, and a hard drive is placed in the stationary part. However, another option is also possible — a bundle similar to HDD + SSD (see above), where eMMC is used to reduce cost and/or power consumption.

— SSD + eMMC. Another combination of the two types of drives described above. It was used in single monoblocks and nettops — mainly to reduce the cost; Today, this variant is almost non-existent.

Drive capacity

The volume of the main drive supplied with the PC. For models with combined storages (for example, HDD+SSD, see "Drive type"), in this case, the main one is considered to be a more capacious hard drive; and if there are two HDDs in the kit, then they usually have the same capacity.

From a purely practical point of view, the more data the drive holds, the better. So the choice for this indicator rests mainly on the price: a larger capacity inevitably means a higher cost. In addition, we recall that SSD-modules in terms of gigabytes of capacity are much more expensive than hard drives; so you can only compare carriers of the same type by the combination of volume and cost.

As for the specific capacity, a volume of 250 GB or less in modern PCs can be found mainly among SSDs. Hard drives of this size are almost never found, for them a capacity of 250 to 500 GB is still considered quite modest. 501 – 750 GB is a pretty good value for an SSD, and among them it is also mainly used. 751 GB — 1 TB is an impressive figure for an SSD and an average for hard drives, 1.5 – 2 TB is a very solid capacity even for an HDD. And a very high capacity — more than 2 TB — paradoxically, is found even among pure SSDs: such drives are installed in high-end workstations, where speed...is no less important than capacity.

2nd drive capacity

The capacity of the optional storage installed in the PC.

This parameter is relevant primarily for configurations with different types of media. So, in HDD + SSD and HDD + eMMC bundles, the hard drive is considered the main drive, and this paragraph indicates the capacity of the solid-state module. In SSD + eMMC configurations, eMMC is considered the second drive — less capacious and performing an auxiliary function. There are PC models with two hard drives, but in such cases, the drives usually have the same volume, and it does not matter for them which one is considered the main one.

If we talk about specific numbers, then the volume up to 128 GB can be considered relatively small, and 128 GB or more is solid. For more information on volumes in general, see "Drive Capacity" above.
Berloga PC often compared