Dark mode
USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison Xiaomi Redmi Note 8 32 GB / 3 GB vs Xiaomi Redmi Note 8T 32 GB / 3 GB

Add to comparison
Xiaomi Redmi Note 8 32 GB / 3 GB
Xiaomi Redmi Note 8T 32 GB / 3 GB
Xiaomi Redmi Note 8 32 GB / 3 GBXiaomi Redmi Note 8T 32 GB / 3 GB
Outdated Product
from $665.00 
Expecting restock
User reviews
TOP sellers
Display
Main display
6.3 "
2340x1080 (19.5:9)
409 ppi
IPS
Gorilla Glass v5
6.3 "
2340x1080 (19.5:9)
409 ppi
IPS
Gorilla Glass v5
Display-to-body ratio82 %80 %
Hardware
Operating systemAndroid 11.0Android 11.0
CPU modelSnapdragon 665Qualcomm SDM665 Snapdragon 665
CPU frequency2 GHz2 GHz
CPU cores88
GPUAdreno 610Adreno 610
RAM3 GB3 GB
Memory storage32 GB32 GB
Memory card slotmicroSDmicroSD
Max. memory card storage256 GB256 GB
Liquid cooling
Test results
AnTuTu Benchmark175 000 score(s)171 000 score(s)
Geekbench1288 score(s)1350 score(s)
Main camera
Lenses4 modules4 modules
Main lens
48 MP
f/1.8
26 mm
79 °
Sony IMX586, 1/2"
48 MP
f/1.8
26 mm
79 °
1/2"
Ultra wide lens
8 MP
f/2.2
13 mm
120 °
1/4"
8 MP
f/2.2
13 mm
120 °
1/4"
Auxiliary lens
Macro lens
Full HD (1080p)60 fps60 fps
4K30 fps30 fps
Slow motion (slow-mo)240 fps240 fps
Flash
Front camera
Form factorteardropteardrop
Main selfie lens13 MP13 MP
Aperturef/2.0f/2.0
Full HD (1080p)30 fps30 fps
Connections and communication
Cellular technology
4G (LTE)
CDMA
4G (LTE)
CDMA
SIM card typenano-SIMnano-SIM
SIM slotsSIM + SIM/microSD2 SIM
Connectivity technology
Wi-Fi 5 (802.11ac)
Bluetooth v 5.0
 
 
IrDA
Wi-Fi 5 (802.11ac)
Bluetooth v 4.2
aptX
NFC
IrDA
Inputs & outputs
USB C
mini-Jack (3.5 mm) bottom
USB C
mini-Jack (3.5 mm) bottom
Features and navigation
Features
rear fingerprint scanner
FM receiver
noise cancellation
gyroscope
light sensor
rear fingerprint scanner
FM receiver
noise cancellation
gyroscope
light sensor
Navigation
aGPS
GPS module
GLONASS
digital compass
aGPS
GPS module
GLONASS
digital compass
Power supply
Battery capacity4000 mAh4000 mAh
Battery life (PCMark)13 h12.15 h
Fast chargingQuick Charge 4.0Quick Charge 3.0
Charger power18 W
General
Bezel/back cover materialplastic/Gorilla Glassplastic/Gorilla Glass
Dimensions (HxWxD)158.3x75.3x8.4 mm161.1х75.4х8.6 mm
Weight190 g200 g
Color
Added to E-Catalognovember 2019november 2019

Display-to-body ratio

The ratio of the screen area to the total front panel area of the phone. Simply put, this spec describes how much of the front panel is occupied by the screen; the rest is the bezels.

This indicator is given exclusively for smartphones with touch screens — it is for them that it is most relevant. The larger the percentage of the body is occupied by the screen, the thinner are the bezels, the neater the smartphone looks and the more convenient it is to work with it with one hand. As for specific numbers, the average values are 80 – 85 %, the higher values allow us to talk about a thin bezel, and more than 90 % — about a “bezel less” design.

Separately, we note that this parameter has nothing to do with the aspect ratio of the screen. The aspect ratio describes only the display itself — its proportions, the ratio between the larger and smaller side of the rectangle.

CPU model

The most popular nowadays are chips from Qualcomm and MediaTek, CPUs from Unisoc are slightly less common. Qualcomm has several processors of each series, namely Snapdragon 778G, Snapdragon 7 Gen 1, Snapdragon 7+ Gen 2, Snapdragon 7s Gen 2, Snapdragon 7 Gen 3, Snapdragon 7+ Gen 3, Snapdragon 865, Snapdragon 870, Snapdragon 888, Snapdragon 8 Gen 1, Snapdragon 8+ Gen 1, Snapdragon 8 Gen 2, Snapdragon 8 Gen 3, Snapdragon 8s Gen 3. And Mediatek has a low cost series MediaTek Helio P and a line of advanced chipsets MediaTek Dimensity (Dimensity 1000, Dimensity 7000, Dimensity 8000, Dimensity 9000).

Knowing the name of the CPU model installed in the smartphone, you can find detailed data on a particula...r CPU and evaluate its level and general capabilities. This is especially true in light of the fact that these capabilities depend not only on the number of cores and clock speed, but also on the specific nuances of the design.

Liquid cooling

The water cooling system of the smartphone is designed to increase the efficiency of heat dissipation. Good cooling allows the smartphone to perform properly at peak loads, without freezes or lags. The use of a liquid radiator makes it possible to improve cooling by an average of 4-6 °C compared to passive coolers. Water cooling is used in high-performance smartphones equipped with a performant CPU and GPU and multiple artificial intelligence co-processors.

Water cooling of a smartphone can have various design implementations. The concept of a radiator filled with refrigerant has gained the greatest popularity. In such a cooler, the liquid evaporates as it heats up and condenses in a separate heat exchanger, after which the liquid again enters the cooling radiator. Of course, if you want to increase cooling efficiency, that will increase the dimensions of the smartphone.

Test results

The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.

AnTuTu Benchmark

The result shown by a device when undergoing a performance test (benchmark) in AnTuTu Benchmark.

AnTuTu Benchmark is a comprehensive test designed specifically for mobile devices, primarily smartphones and tablets. It evaluates the efficiency of the processor, memory, graphics, and input/output systems, providing a clear impression of the system's capabilities. The higher the performance, the more points are awarded. Smartphones that score over 900K points are considered high-performance according to the AnTuTu ranking.

Like any benchmark, this test does not provide absolute precision: the same device can show different results, usually with deviations within 5-7%. These deviations depend on various factors unrelated to the system itself, such as the device's load from third-party programs and the ambient temperature during testing. Therefore, significant differences between two models can only be noted when the gap in their scores exceeds this margin of error.

Geekbench

The result shown by a device when undergoing a performance test (benchmark) in Geekbench.

Geekbench is a specialized benchmark designed for processors. Since version 4.0, it also includes tests for graphics processors, and by the end of 2019, version 5 of the benchmark was released. Typically, the specifications for portable gadgets include data specifically for the CPU. During testing, Geekbench simulates workloads that occur during real-world tasks, evaluating both single-core performance and the efficiency of multi-core operations. This provides a solid overview of the processor's capabilities in everyday use. Additionally, Geekbench is cross-platform, allowing for comparisons between the CPUs of different devices (smartphones, tablets, laptops, PCs). In reference materials, only the multi-core test results for the processor are usually provided.

Main lens

Specifications of the main lens of the rear camera installed in the phone. In models with several lenses (see “Number of lenses”), the main one is responsible for basic shooting capabilities and does not have a pronounced specialization (wide-angle, telephoto, etc.). Four main parameters can be indicated here: resolution, aperture ( high aperture optics are quite common), focal length, additional sensor data.

Resolution(in megapixels, MP)
Resolution of the sensor used for the main lens. Budget options are equipped with a module 8 MP and below, many models have 12 MP camera / 13 MP, also recently a trend towards increasing megapixels has been popular. Often in smartphones you can find the main photomodule at 48 MP, 50 MP< /a>, 64 MP and even 108 MP .

The maximum resolution of the resulting image directly depends on the resolution of the sensor; and the high resolution of the "picture", in turn, allows you to better display fine details. On the other hand, an increase in the number of megapixels in itself can lead to a deterioration in the overall image quality - due to the smaller size of each individual pixel, the noise level increases. As a result,...the direct resolution of the camera has little effect on the quality of the shooting - more depends on the physical size of the matrix, the features of the optics and various design tricks used by the manufacturer.

Aperture
Aperture describes the ability of a lens to transmit light. It is written as a fractional number, for example f/1.9. Moreover, the larger the number in the denominator, the lower the aperture ratio, the less light passes through the optics, all other things being equal. For example, an f/2.6 lens will be “darker” than f/1.9.

High aperture gives the camera a number of advantages. First, it improves the quality of shooting in low light. Secondly, it's possible to shoot at low shutter speeds, minimizing the effect of "stirring" and blurring of moving objects in the frame. Thirdly, with fast optics it is easier to achieve a beautiful background blur ("bokeh") — for example, when shooting portraits.

Focal length(in millimetres)
The focal length is a distance between the sensor and the centre of the lens (focused to infinity), at which the most clear image is obtained on the matrix. However, for smartphones, the specifications indicate not the actual, but the so-called equivalent focal length — a conditional indicator recalculated using special formulas. This indicator can be used to evaluate and compare cameras with different sensor sizes (the actual focal length cannot be used for this, since with a different sensor size the same real focal length will correspond to different viewing angles). (It is also worth saying that the equivalent focal length can be noticeably larger than the thickness of the case — there is nothing unusual in this, since this is a conditional, and not a real indicator).

Anyway, the field of view and the degree of magnification directly depend on the equivalent focal length: a larger focal length gives a smaller field of view and a larger size of individual objects that fall into the frame, and a decrease in this distance, in turn, allows you to cover more space. In most modern smartphones, the focal length of the main camera ranges from 13 to 35 mm; if compared with the optics of traditional cameras, then lenses with equivalent focal length up to 25 mm can be attributed to wide-angle lenses, more than 25 mm — to universal models “with a bias towards wide-angle shooting”. Such values are chosen due the fact that smartphones are often used for shooting in cramped conditions, when a fairly large space needs to fit into the frame at a small distance. Enlargement of the picture, if necessary, is most often carried out digitally — due to the reserve of megapixels on the sensor; but there are also models with optical zoom (see below) — for them, not one value is given, but the entire working range of the equivalent focal length (recall, optical zoom is carried out by changing the focal length).

Field of view(in degrees). It characterizes the size of the area covered by the lens, as well as the size of individual objects "seen" by the camera. The larger this field, the more of the scene gets into the frame, but the smaller the individual objects in the image are. The field of view is directly related to the focal length (see above): increasing this distance narrows the field of view of the lens, and vice versa.

Note that this parameter is generally considered important for professional use of the camera rather than for amateur photography. Therefore, viewing angle data is given mainly for smartphones equipped with advanced cameras — including in order to emphasize the high class of cameras. As for specific values, for the main lens they usually are in the range from 70° to 82° — this corresponds to the general specifics of such optics (universal shooting with an emphasis on general scenes and extensive coverage at short distances).

Additional Sensor Data
Additional information regarding the sensor installed in the main lens. This item can specify both the size (in inches) and the sensor model, and sometimes both parameters at once. Anyway, such data is provided only if the device is equipped with a high-end sensor. With the model, everything is quite simple: knowing the name of the sensor, you can find detailed data on it. The size is worth considering a little more.

The size of the sensor is traditionally indicated in fractional parts of an inch — accordingly, for example, a 1/2.3" sensor will be larger than 1/2.6". Larger sensors are considered more advanced, as they provide better image quality at the same resolution. The logic here is simple - due to the large sensor area, each individual pixel is also larger and gets more light, which improves sensitivity and reduces noise. Of course, the actual image quality will also depend on a number of other parameters, but in general, a larger sensor size usually means a more advanced camera. In advanced photo flagships, you can find matrices with a physical size of 1”, which is comparable to image sensors used in top compact cameras with fixed lenses.

SIM slots

The quantity and types of removable cards (SIM, memory cards) that can be installed in the phone. On E-Catalog this parameter is specified only for devices that allow the installation of more than one SIM card — most often that means 2 SIM cards, however, you can find devices with three or even four corresponding slots.

Initially several slots mean that several phone numbers can be used on one device. Thus it is possible to combine personal and work numbers, separate plans for calls and the Internet, etc. in one device. However modern devices (especially smartphones) often provide the combined design “SIM + SIM / memory card " : one of the slots is intended only for SIM, the second can be used both for a SIM card or for a memory card such as microSD or Nano Memory (see "Memory card slot"). At the same time, there is no separate slot for a memory card in the device, so the user has to choose between the second number and additional storage. Therefore, if you want to use 2 SIM cards and a memory card at the same time, you should pay attention to models where this is directly stated.

It is also worth considering that individual slots may differ in the type of compatible SIM cards; see below for details.

Connectivity technology

Types of communications supported by the device in addition to mobile networks.

This list includes two types of characteristics. The first is the communication technology itself: Wi-Fi (including advanced standards Wi-Fi 5 (802.11ac) , Wi-Fi 6 (802.11ax), Wi-Fi 6E (802.11ax) , Wi-Fi 7 (802.11be)), Bluetooth (including the new generation Bluetooth v 5 in the form of a version 5.0, 5.1, 5.2, 5.3 and 5.4), NFC, satellite communication. The second type is additional functions implemented through one or another communication standard: this is primarily aptX support (including aptX HD, aptX Adaptive and aptX Lossless) and even a built-in walkie-talkie. Here is a more detailed description of each of these characteristics:

— Wi-Fi 4 (802.11n). Wi-Fi is a wireless communication technology that in modern phones can be used both to access the Internet through wireless access points, and for direct...communication with other devices (in particular, cameras and drones). Wi-Fi is a must for smartphones, but is extremely rare in traditional phones. Specifically, Wi-Fi 4 (802.11n) provides data transfer speeds of up to 600 Mbit/s and uses two frequency ranges at once - 2.4 GHz and 5 GHz, making it compatible with earlier 802.11 b/g standards and with more new Wi-Fi 5 (see below). Wi-Fi 4 is considered a relatively modest standard by modern standards, but it is still quite sufficient for most tasks.

- Wi-Fi 5 (802.11ac). The Wi-Fi standard (see above), which is the successor to Wi-Fi 4. In theory, it supports speeds of up to 6.77 Gbps, and also uses the 5 GHz band - it is less loaded with extraneous signals and more noise-resistant than the traditional 2.4 GHz. For compatibility purposes, a smartphone with a Wi-Fi 5 module may provide support for earlier standards, but it would not hurt to clarify this point separately.

- WiGig (802.11ad). Further, after Wi-Fi 5, the development of Wi-Fi standards, characterized primarily by the use of the 60 GHz band. In terms of maximum speed, it is virtually no different from Wi-Fi 5, however, the higher frequency increases the channel capacity, so that when several gadgets simultaneously communicate with one common device (for example, a router), the communication speed does not drop as much as in earlier standards. On the other hand, the 802.11ad signal is almost incapable of passing through walls; Manufacturers use various tricks to compensate for this shortcoming, but the best communication quality is still achieved only with direct visibility. Relatively little equipment for the WiGig standard is currently being produced, and it is not compatible with earlier versions of Wi-Fi; Therefore, smartphones usually provide support for other standards.

- Wi-Fi 6 (802.11ax). A standard developed as a direct development and improvement of Wi-Fi 5. Uses the ranges from 1 to 7 GHz - that is, it is capable of operating at standard frequencies of 2.4 GHz and 5 GHz (including equipment of earlier standards), and in others frequency bands. The maximum data transfer rate has increased to 10 Gbps, but the main advantage of Wi-Fi 6 was not even this, but the further optimization of the simultaneous operation of several devices on the same channel (improving the technical solutions used in Wi-Fi 5 and WiGig). Thanks to this, Wi-Fi 6 gives the lowest speed drop among modern standards when the channel is busy.

- Wi-Fi 6E (802.11ax). The Wi-Fi 6E standard is technically called 802.11ax. But unlike basic Wi-Fi 6 (for more details, see the corresponding paragraph), which is named similarly, it provides for operation in the unused 6 GHz band. In total, the standard uses 14 different frequency bands, offering high throughput in the most crowded places with many active connections. And it is backwards compatible with previous versions.

— Wi-Fi 7 (802.11be). The technology, like the previous Wi-Fi 6E, is capable of operating in three frequency ranges: 2.4 GHz, 5 GHz and 6 GHz. At the same time, the maximum bandwidth in Wi-Fi 7 was increased from 160 MHz to 320 MHz - the wider the channel, the more data it can transmit. The IEEE 802.11be standard uses 4096-QAM modulation, which also allows more symbols to be accommodated in a data transmission unit. From Wi-Fi 7 you can squeeze out a maximum theoretical information exchange speed of up to 46 Gbps. In the context of using wireless connections for streaming and video games, the implemented MLO (Multi-Link Operation) development seems very interesting. With its help, you can aggregate several channels in different ranges, which significantly reduces delays in data transmission and ensures low and stable ping. And Multi-RU (Multiple Resource Unit) technology is designed to minimize communication delays when there are many connected client devices.

— Bluetooth. Direct wireless communication technology between various devices. In mobile phones it is used primarily for connecting headphones, headsets and wrist gadgets such as fitness bracelets, but other methods of application are also possible - remote control mode, direct file transfer, etc. In modern mobile phones there can be different versions of Bluetooth, here are their features:
  • Bluetooth v 4.0. A fundamental update (after version 3.0), introducing another data transmission format - Bluetooth Low Energy (LE). This protocol is designed primarily for miniature devices that transmit small amounts of information, such as fitness bracelets and medical sensors. Bluetooth LE allows you to significantly save energy during such communication.
  • Bluetooth v4.1. Development and improvement of Bluetooth 4.0. One of the key improvements was the optimization of collaboration with 4G LTE communication modules - so that Bluetooth and LTE do not interfere with each other. In addition, this version makes it possible to simultaneously use a Bluetooth device in several roles - for example, to remotely control an external device while simultaneously streaming music to headphones.
  • Bluetooth v4.2. Further, after 4.1, the development of the Bluetooth standard. It did not provide any fundamental updates, but received a number of improvements regarding reliability and noise immunity, as well as improved compatibility with the Internet of Things.
  • Bluetooth v 5.0. Version introduced in 2016. The key innovations were the further expansion of capabilities associated with the Internet of Things. In particular, in the Bluetooth Low Energy protocol (see above), it became possible to double the data transfer rate (up to 2 Mbit/s) at the cost of reducing the range, and also quadruple the range at the cost of reducing the speed; In addition, a number of improvements have been introduced regarding simultaneous work with a large number of connected devices.
  • Bluetooth v5.1. Update of the version described above v 5.0. In addition to general improvements in the quality and reliability of communication, this update introduced such an interesting feature as determining the direction from which the Bluetooth signal is coming. Thanks to this, it becomes possible to determine the location of connected devices with centimeter accuracy, which can be useful, for example, when searching for wireless headphones.
  • Bluetooth v 5.2. The next update after 5.1 is Bluetooth 5 generation. The main innovations in this version are a number of security improvements, additional optimization of power consumption in LE mode and a new audio signal format for synchronizing parallel playback on multiple devices.
  • Bluetooth v 5.3. The Bluetooth v 5.3 wireless protocol was introduced at the dawn of 2022. Among the innovations in it, they accelerated the process of negotiating a communication channel between the controller and the device, implemented the function of quickly switching between the operating state in a low duty cycle and a high-speed mode, and improved the throughput and stability of the communication by reducing susceptibility to interference. When unexpected interference occurs in Low Energy mode, the procedure for selecting a communication channel to switch from now on has been accelerated. There are no fundamental innovations in protocol 5.3, but a number of qualitative improvements are evident in it.
  • Bluetooth v5.4. Protocol version 5.4, which was introduced at the beginning of 2023, increased the range and speed of data exchange, which is well suited for use in applications that require communication over long distances (for example, smart home systems). Also in Bluetooth v 5.4, the energy-saving BLE mode has been improved. This version of the protocol uses new security features to protect data from unauthorized access, has increased communication reliability by selecting the best channel for communication, and prevents communication losses due to interference.


- aptX support. aptX technology was developed to improve the quality of sound transmitted over Bluetooth. When transmitting sound in a regular format, without aptX, the signal is compressed quite heavily, which affects the sound quality; This is not critical when talking on the phone, but it can significantly spoil the impression of listening to music. In turn, aptX allows you to transmit an audio signal with virtually no compression and achieve sound quality comparable to a wired communication. Such features will be especially appreciated by music lovers who prefer Bluetooth headphones or wireless speakers. Of course, to use aptX, both your smartphone and external audio device must support it.

- aptX HD support. aptX HD is a further development and improvement of the original aptX technology, allowing you to transmit sound in even higher quality - Hi-Res (24-bits/48kHz). According to the creators, this standard allows you to achieve signal quality superior to AudioCD and sound purity comparable to wired communication. The latter is often questionable, but it can be argued that overall aptX HD provides very high sound quality. On the other hand, all the advantages of this technology become noticeable only on Hi-Res audio - with quality 24-bits/48kHz or higher; otherwise, the quality is limited not so much by the characteristics of the communication as by the properties of the source files.

- Support for aptX LL. A modification of aptX technology, designed to minimize signal transmission delays. Encoding and decoding a signal when transmitting audio via Blueooth with aptX inevitably takes some time; This is not critical when listening to music, but in videos or games there may be a noticeable desynchronization between the image and sound. The aptX LL technology does not have this shortcoming; it also gives a delay, but this delay is so small that a person does not notice it.

- Support for aptX Adaptive. Further development of aptX; actually combines the capabilities of aptX HD and aptX Low Latency, but is not limited to this. One of the main features of this standard is the so-called adaptive bitrate: the codec automatically adjusts the actual data transfer rate based on the characteristics of the broadcast content (music, game audio, voice communications, etc.) and the congestion of the frequencies used. This, in particular, helps reduce energy consumption and increase communication reliability; and special algorithms allow you to broadcast sound quality comparable to aptX HD (24 bits/48 kHz), using much less transmitted data. And the minimum data transfer latency (at the aptX LL level) makes this codec excellent for games and movies.

– Support for aptX Lossless. The next branch of development of aptX technology, which allows you to transmit CD-quality sound over a wireless Bluetooth network without loss or use of compression. At the same time, audio broadcasting with sampling parameters of 16 bits / 44.1 kHz is carried out with a bitrate of about 1.4 Mbit/s - this is about three times faster than in the aptX Adaptive edition. Support for aptX Lossless began to be introduced in late 2021 as part of Qualcomm's Snapdragon Sound initiative, which is available on smartphones, headphones and speakers with a Snapdragon 8 Gen 1 processor and later.

— NFC chip. NFC is a technology for wireless communication over ultra-low distances, up to 10 cm. One of the most popular applications of this technology in smartphones is contactless payments, when the device actually plays the role of a credit card: just bring the device to a terminal that supports contactless technology like PayPass or PayWave. Another common way to use NFC is to automatically connect to another NFC-compatible device via Wi-Fi or Bluetooth: gadgets brought close to each other automatically set up a communication, and the customer only needs to confirm it. Other options are technically possible: recognizing smart cards and RFID tags, using the device as a travel card, access card, etc. However, such use formats are much less common.

- Infrared port. The infrared port looks like a small “eye”, usually on the top end of the phone. This equipment allows you to turn your phone into a remote control for controlling various equipment - just install the appropriate application. At the same time, we note that among such applications you can find an option for almost any device - from TVs to air conditioners, hoods, etc. Accordingly, the “smartphone remote control” turns out to be very universal.

— Walkie-talkie. Built-in radio module that allows you to use the phone as a walkie-talkie - for communication over relatively low distances without using SIM cards. Of course, for such communication you will need another walkie-talkie (or a phone with this function). The specific frequencies supported by the built-in radio module should be clarified separately; however, all phones with this feature operate in one or more standard bands. In practice, this means that they are capable of communicating not only with similar phones, but also with classic civilian walkie-talkies - provided they match the supported bands. The communication range is usually quite low; however, the built-in walkie-talkie can be very useful for tech in situations where conventional mobile communications are ineffective or unavailable. Typical examples of such situations are staying “far from civilization”, in an area of poor treatment, or traveling abroad, where roaming is expensive.

– Satellite communication. The satellite communication function is intended to send emergency alerts to rescue services in emergency situations. Smartphones with the ability to connect to satellite frequencies can communicate with emergency services in areas where there is no mobile network treatment. For better signal reception from satellites, it is advisable for the customer to be in an open space. At the stage of function formation, only ready-made requests can be transferred. In the future, it is planned to support full messaging via satellite communications, but a separate fee will be charged for them.
Xiaomi Redmi Note 8 often compared
Xiaomi Redmi Note 8T often compared