USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison OnePlus Ace 3 Pro 256 GB / 12 GB vs OnePlus 12R 256 GB / 16 GB

Add to comparison
OnePlus Ace 3 Pro 256 GB / 12 GB
OnePlus 12R 256 GB / 16 GB
OnePlus Ace 3 Pro 256 GB / 12 GBOnePlus 12R 256 GB / 16 GB
from $909.00 
Outdated Product
Compare prices 2
TOP sellers
Phase autofocus of the main camera. Flicker sensor. The case material in green is leather, white is ceramic, black is glass. Advanced vibration motor Turbo Android Motor King.
Color temperature sensor. Updated Turbo N54 vibration motor.
For the Chinese market it is sold under the name OnePlus Ace 3.
Display
Main display
6.78 "
2780х1264
450 ppi
AMOLED (LTPO)
120 Hz
HDR10+, Dolby Vision
DC Dimming support
Gorilla Glass Victus 2
6.78 "
2780х1264
450 ppi
AMOLED (LTPO)
120 Hz
HDR10+, Dolby Vision
DC Dimming support
Gorilla Glass Victus 2
Brightness800 – 1600 nit1600 nit
Display-to-body ratio91 %91 %
DCI-P3
Hardware
Operating systemAndroid 14Android 14
CPU modelSnapdragon 8 Gen 3Snapdragon 8 Gen 2
CPU frequency3.3 GHz3.3 GHz
CPU cores88
Processor rating AnTuTu12799
GPUAdreno 750Adreno 740
RAM12 GB16 GB
RAM typeLPDDR5XLPDDR5X
Memory storage256 GB256 GB
Storage typeUFS 4.0UFS 3.1
Memory card slotabsentabsent
Liquid cooling
Test results
AnTuTu Benchmark2107 000 score(s)1518 000 score(s)
Geekbench5245 score(s)
Wild Life (Extreme)3732 score(s)
Main camera
Lenses3 modules3 modules
Main lens
50 MP
f/1.8
24 mm
Sony IMX890
50 MP
f/1.8
24 mm
Sony IMX890, 1/1.56"
Ultra wide lens
8 MP
f/2.2
16 mm
112 °
8 MP
f/2.2
112 °
Sony IMX355, 1/4"
Macro lens
Full HD (1080p)60 fps60 fps
4K60 fps60 fps
Slow motion (slow-mo)480 fps240 fps
Image stabilizationopticaloptical
Claimed magnification2 x
Flash
Front camera
Form factorin displayin display
Main selfie lens16 MP16 MP
Aperturef/2.4f/2.4
Full HD (1080p)30 fps30 fps
Connections and communication
Cellular technology
5G
CDMA
5G
4G (LTE)Cat.19 (1600/210 Mbps)
SIM card typenano-SIMnano-SIM
SIM slots2 SIM2 SIM
Connectivity technology
Wi-Fi 7 (802.11be)
Bluetooth v 5.4
aptX HD
NFC
IrDA
Wi-Fi 7 (802.11be)
Bluetooth v 5.3
aptX HD
NFC
IrDA
Inputs & outputs
USB C 2.0
USB C 2.0
Features and navigation
Features
in-display fingerprint scanner
stereo
noise cancellation
gyroscope
light sensor
in-display fingerprint scanner
stereo
Dolby Atmos
noise cancellation
gyroscope
light sensor
Navigation
aGPS
GPS module
Dual GPS
GLONASS
Galileo
digital compass
aGPS
GPS module
Dual GPS
GLONASS
Galileo
digital compass
Power supply
Battery capacity6100 mAh5500 mAh
Battery life (PCMark)20.68 h
Fast chargingOppo SuperVOOCOppo SuperVOOC
Charger power100 W100 W
Fast charging time100% in 26 min
General
WaterproofIP65IP64
Bezel/back cover materialmetal/ceramicmetal/glass
What's in the box?
case
charger
case
screen protector
charger
Dimensions (HxWxD)163.3x75.3x8.69 mm163.3x75.3x8.8 mm
Weight225 g207 g
Color
Added to E-Catalogjune 2024december 2023
Glossary

Brightness

The maximum brightness in nits provided by the smartphone display.

The brighter the display, the more readable the picture remains on it under intense ambient light (for example, outdoors on a clear sunny day). Also, high brightness is important for the correct displaying of HDR content. However, a large amount of brightness affects the cost and power consumption of the screen. Manufacturers can specify standard, maximum, and peak brightness values. At the same time, an equal sign cannot be put between the maximum and peak brightness. The first indicates the ability of the screen to produce the specified brightness over its entire area, while the peak one — in a limited area and for a short time (mainly for HDR content).

CPU model

The most popular nowadays are chips from Qualcomm and MediaTek, CPUs from Unisoc are slightly less common. Qualcomm has several processors of each series, namely Snapdragon 778G, Snapdragon 7 Gen 1, Snapdragon 7+ Gen 2, Snapdragon 7s Gen 2, Snapdragon 7 Gen 3, Snapdragon 7+ Gen 3, Snapdragon 865, Snapdragon 870, Snapdragon 888, Snapdragon 8 Gen 1, Snapdragon 8+ Gen 1, Snapdragon 8 Gen 2, Snapdragon 8 Gen 3, Snapdragon 8s Gen 3. And Mediatek has a low cost series MediaTek Helio P and a line of advanced chipsets MediaTek Dimensity (Dimensity 1000, Dimensity 7000, Dimensity 8000, Dimensity 9000).

Knowing the name of the CPU model installed in the smartphone, you can find detailed data on a particula...r CPU and evaluate its level and general capabilities. This is especially true in light of the fact that these capabilities depend not only on the number of cores and clock speed, but also on the specific nuances of the design.

Processor rating AnTuTu

End-to-end processor rating (regardless of chipset manufacturer) for Android smartphones. It is based on a set of maximum performance indicators of the processor itself, the memory bus, the graphics core, etc. Processor ratings can be useful to enable comparison and easy selection of similar models.

GPU

The model of the GPU used in the mobile phone.

This module is responsible for all tasks related to graphics; accordingly, its specs directly affect the efficiency of processing a particular picture. This is especially noticeable in the example of modern 3D games. Therefore, the presence of a powerful video adapter is especially important for gaming smartphones. And knowing the model of the GPU, you can find detailed data about it and evaluate its capabilities.

RAM

The parameter determines the overall performance of the smartphone: the more RAM, the faster the device works and the better it copes with an abundance of tasks and / or resource-intensive applications (ceteris paribus). This is even more true in light of the fact that large amounts of "RAM" are usually combined with powerful advanced processors. However, only devices with identical operating systems can be directly compared with each other, and in the case of Android, with the same versions and editions of this OS (for more on all this, see "Operating system"). This is due to the fact that different operating systems and even different versions of the same OS can differ markedly in terms of RAM requirements. For example, iOS, thanks to good optimization for specific devices, is able to work efficiently with 3 GB of RAM. For modern versions of Android in the regular edition (not Go Edition), the mentioned 3 GB is actually the required minimum. Under such an OS, it is better to have at least 4 GB or 6 GB of RAM. In high-end devices with powerful electronic "stuffing" you can also find more impressive numbers - 8 GB or even 12 GB or more.

Storage type

The type of the phone's storage.

The specification determines, first of all, the speed of the memory, and, accordingly, the performance of the device as a whole (especially when working with large amounts of data or resource-intensive applications). Nowadays, there are two basic specifications — eMMC and UFS; each of them has several versions. In general, storages with UFS 3.1 and UFS 4.0 are the fastest and most advanced today, but they cost accordingly, and therefore are used mainly in premium smartphones. A more detailed description of these standards looks like this:

— eMMC. One of the simplest and most affordable standards for solid state memory — for example, this specification is used by most flash drives. In smartphones and other portable gadgets, this standard was generally accepted until 2016, when the introduction of UFS began; however, even now it is very popular — mainly due to its low cost and low power consumption. But the speeds of eMMC are noticeably lower than those of UFS. So, in the latest version of eMMC 5.1A (2019), the read speed is up to 400 MB/s, and the earlier and more common version of eMMC 5.1 provides up to 250 MB/s in read mode, up to 125 MB/s in sequential write mode and all only up to 7.16 MB/s with random writes (in other words, in application mode).

— UFS. A solid state drive standard designed to be a faster, more advanced successor to eMM...C. In addition to the increased data exchange speeds, the format of work has also been changed in UFS — it is fully duplex, that is, reading and writing can be performed simultaneously (whereas in eMMC these processes were performed in turn). Also, efficiency in random read and write mode has been significantly improved, which has a positive effect on the quality of work with applications. Specific data exchange rates and features of work depend on the version of UFS, nowadays you can find the following options:
  • 2.0. The earliest of the versions found in modern smartphones; was released back in 2013. Provides data transfer rates up to 1.2 GB/s, the maximum available in this version. The newer version 2.1 has the same speeds, but it is supplemented with a number of important innovations. Therefore, UFS 2.0 memory is rarely used in mobile phones.
  • 2.1. The first of the versions that are widely used in smartphones; was released in 2016. In terms of speed, it does not differ from version 2.0 described above, and the main differences are in some improvements. In particular, UFS 2.1 introduced storage status indicator (“health”), the ability to remotely update the firmware, as well as a number of solutions aimed at improving overall reliability.
  • 2.2. An evolution of the UFS 2.x standard introduced in Summer 2020. A key improvement is the introduction of the WriteBooster feature (originally introduced in UFS 3.1); this feature allows you to significantly increase the write speed and, accordingly, the overall performance in tasks like running applications.
  • 3.0. A version released in 2018 and implemented in hardware a year later. The throughput was increased to 2.9 GB/s per two lines (1.45 GB/s per one), new versions of the M-PHY electronic protocol (physical layer) and UniPro based on it were introduced, the reliability of working with data and the temperature mode of operation of the controllers has been expanded (theoretically, it can range from -40 °С to 105 °С). UFS 3.0 is used mainly in fairly advanced smartphones, although in the future we can expect this specification to be extended to more modest models.
  • 3.1. The successor to the UFS 3.0 standard, officially introduced in early 2020. It is positioned as a specification created specifically for high-performance mobile devices and aimed at increasing speed while minimizing power consumption. To do this, UFS 3.1 has a number of innovations: a non-volatile Write Booster cache to speed up writing; special DeepSleep power saving mode for relatively simple and inexpensive systems; as well as the Performance Throttling Notification feature, which allows the drive to send overheating signals to the control system. In addition, this standard may additionally provide support for the HPB extension, which improves reading speed.
  • 4.0. UFS 4.0 doubled the throughput per lane (23.2 Gbps per lane) and improved energy efficiency by about 46% (compared to the previous 3.1 specification). UFS 4.0 standard memory modules provide maximum read speed up to 4200 MB/s, write speed up to 2800 MB/s. The high bandwidth makes the memory standard ideal for 5G smartphones.

Test results

The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.

AnTuTu Benchmark

The result shown by a device when undergoing a performance test (benchmark) in AnTuTu Benchmark.

AnTuTu Benchmark is a comprehensive test designed specifically for mobile devices, primarily smartphones and tablets. It evaluates the efficiency of the processor, memory, graphics, and input/output systems, providing a clear impression of the system's capabilities. The higher the performance, the more points are awarded. Smartphones that score over 1.1M points are considered high-performance according to the AnTuTu ranking.

Like any benchmark, this test does not provide absolute precision: the same device can show different results, usually with deviations within 5-7%. These deviations depend on various factors unrelated to the system itself, such as the device's load from third-party programs and the ambient temperature during testing. Therefore, significant differences between two models can only be noted when the gap in their scores exceeds this margin of error.

Geekbench

The result shown by a device when undergoing a performance test (benchmark) in Geekbench.

Geekbench is a specialized benchmark designed for processors. Since version 4.0, it also includes tests for graphics processors, and by the end of 2019, version 5 of the benchmark was released. Typically, the specifications for portable gadgets include data specifically for the CPU. During testing, Geekbench simulates workloads that occur during real-world tasks, evaluating both single-core performance and the efficiency of multi-core operations. This provides a solid overview of the processor's capabilities in everyday use. Additionally, Geekbench is cross-platform, allowing for comparisons between the CPUs of different devices (smartphones, tablets, laptops, PCs). In reference materials, only the multi-core test results for the processor are usually provided.
OnePlus Ace 3 Pro often compared
OnePlus 12R often compared