USA
Catalog   /   Computing   /   Components   /   Motherboards

Comparison Asus TUF GAMING B450M-PLUS II vs Asus TUF B450M-PLUS GAMING

Add to comparison
Asus TUF GAMING B450M-PLUS II
Asus TUF B450M-PLUS GAMING
Asus TUF GAMING B450M-PLUS IIAsus TUF B450M-PLUS GAMING
Compare prices 1
from $166.99 
Expecting restock
TOP sellers
Featuresgaming for overclockinggaming for overclocking
SocketAMD AM4AMD AM4
Form factormicro-ATXmicro-ATX
Power phases65
VRM heatsink
LED lighting
Lighting syncAsus Aura SyncAsus Aura Sync
Size (HxW)244x244 mm244x244 mm
Chipset
ChipsetAMD B450AMD B450
BIOSAmiAmi
UEFI BIOS
RAM
DDR44 slot(s)4 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency4400 MHz3200 MHz
Max. memory128 GB64 GB
Drive interface
SATA 3 (6Gbps)66
M.2 connector11
M.21xSATA/PCI-E 4x1xSATA/PCI-E 4x
Integrated RAID controller
 /Raid 0, 1, 10/
 /RAID 0, RAID 1, RAID 10/
Expansion slots
1x PCI-E slots11
PCI-E 16x slots22
PCI Modes16x/4x16x/4x
PCI Express3.03.0
CrossFire (AMD)
Steel PCI-E connectors
Internal connections
TPM connector
USB 2.022
USB 3.2 gen111
Video outputs
DVI outputDVI-DDVI-D
HDMI output
HDMI versionv.2.0b
Integrated audio
AudiochipRealtek ALC887/897Realtek ALC887-VD2
Sound (channels)7.17.1
Network interfaces
LAN (RJ-45)1 Gbps1 Gbps
LAN ports11
LAN controllerRealtek RTL8111HRealtek RTL8111H
External connections
USB 2.022
USB 3.2 gen122
USB 3.2 gen211
USB C 3.2 gen111
PS/211
BIOS FlashBack
Power connectors
Main power socket24 pin24 pin
CPU power8 pin8 pin
Fan power connectors33
Added to E-Catalogoctober 2020july 2018

Power phases

The number of processor power phases provided on the motherboard.

Very simplistically, phases can be described as electronic blocks of a special design, through which power is supplied to the processor. The task of such blocks is to optimize this power, in particular, to minimize power surges when the load on the processor changes. In general, the more phases, the lower the load on each of them, the more stable the power supply and the more durable the electronics of the board. And the more powerful the CPU and the more cores it has, the more phases it needs; this number increases even more if the processor is planned to be overclocked. For example, for a conventional quad-core chip, only four phases are often enough, and for an overclocked one, at least eight may be needed. It is because of this that powerful processors can have problems when used on inexpensive low-phase motherboards.

Detailed recommendations on choosing the number of phases for specific CPU series and models can be found in special sources (including the documentation for CPU itself). Here we note that with numerous phases on the motherboard (more than 8), some of them can be virtual. To do this, real electronic blocks are supplemented with doublers or even triplers, which, formally, increases the number of phases: for example, 12 claimed phases can represent 6 physical blocks with doublers. However, virtual phases are much inferior to real ones in terms of capabilities — in fact, t...hey are just additions that slightly improve the characteristics of real phases. So, let's say, in our example, it is more correct to speak not about twelve, but only about six (though improved) phases. These nuances must be specified when choosing a motherboard.

Max. clock frequency

The maximum RAM clock speed supported by the motherboard. The actual clock frequency of the installed RAM modules should not exceed this indicator — otherwise, malfunctions are possible, and the capabilities of the “RAM” cannot be used to the fullest.

For modern PCs, a RAM frequency of 1500 – 2000 MHz or less is considered very low, 2000 – 2500 MHz is modest, 2500 – 3000 MHz is average, 3000 – 3500 MHz is above average, and the most advanced boards can support frequencies of 3500 – 4000 MHz and even more than 4000 MHz.

Max. memory

The maximum amount of RAM that can be installed on the motherboard.

When choosing according to this parameter, it is important to take into account the planned use of the PC and the real needs of the user. So, volumes up to 32 GB inclusive are quite enough to solve any basic problems and run games comfortably, but without a significant reserve for an upgrade. 64 GB is the optimal option for many professional use cases, and for the most resource-intensive tasks like 3D rendering, 96 GB or even 128 GB of memory will not be a limit. The most “capacious” motherboards are compatible with volumes of 192 GB or more - they are mainly top-end solutions for servers and HEDT (see “In the direction”).

You can choose this parameter with a reserve – taking into account a potential RAM upgrade, because installing additional RAM sticks is the simplest way to increase system performance. Taking this factor into account, many relatively simple motherboards support very significant amounts of RAM.

TPM connector

Specialized TPM connector for connecting the encryption module.

TPM (Trusted Platform Module) allows you to encrypt the data stored on your computer using a unique key that is practically unbreakable (it is extremely difficult to do this). The keys are stored in the module itself and are not accessible from the outside, and data can be protected in such a way that their normal decryption is possible only on the same computer where they were encrypted (and with the same software). Thus, if information is illegally copied, an attacker will not be able to access it, even if the original TPM module with encryption keys is stolen: TPM will recognize the system change and will not allow decryption.

Technically, encryption modules can be built directly into motherboards, but it is still more justified to make them separate devices: it is more convenient for the user to purchase a TPM if necessary, and not overpay for an initially built-in function that may not be needed. Because of this, there are motherboards without a TPM connector at all.

HDMI version

HDMI connector version (see above) installed in the motherboard.

— v.1.4. The earliest of the standards found nowadays, which appeared back in 2009. Supports resolutions up to 4096x2160 inclusive and allows you to play Full HD video with a frame rate of up to 120 fps — this is enough even for 3D playback.

— v.1.4b. A modified version of v.1.4 described above, which introduced a number of minor updates and improvements — in particular, support for two additional 3D formats.

— v.2.0. Also known as HDMI UHD, this version introduced full 4K support, with frame rates up to 60 fps, as well as the ability to work with 21:9 ultra-widescreen video. In addition, thanks to the increased bandwidth, the number of simultaneously reproduced audio channels has grown to 32, and audio streams to 4. And in the v.2.0a improvement, HDR support has also been added to all this.

— v.2.1. Another name is HDMI Ultra High Speed. Compared to the previous version, the interface bandwidth has really increased significantly — it is enough to transmit video at resolutions up to 10K at 120 frames per second, as well as to work with the extended BT.2020 colour space (the latter may be useful for some professional tasks). HDMI Ultra High Speed cables are required to use the full capabilities of HDMI v2.1, but older standard features are available with regular cables.

Audiochip

The model of the audio chip (a module for processing and outputting sound) installed on the motherboard. Data on the exact name of the sound chip will be useful when looking for detailed information about it.

Modern "motherboards" can be equipped with fairly advanced audio modules, with high sound quality and extensive features, which makes them suitable even for gaming and multimedia PCs (although professional audio work will still most likely require a separate sound card). Here are the most popular modern audio chips: Realtek ALC887, Realtek ALC892, Realtek ALC1150, Realtek ALC1200, Realtek ALC1220, Realtek ALC4050, Realtek ALC4080, Supreme FX.

BIOS FlashBack

Motherboards that support BIOS FlashBack provide the ability to flash or restore the BIOS without a processor, video card or memory. The main purpose of the function is to provide users with the ability to update the BIOS in cases where the current version is incompatible with the installed processor or other computer components, which may lead to the inability to start the system. As a rule, the motherboard provides for this a USB connector for a flash drive and a special button (usually labeled BIOS Flashback) - pressing it initiates the update process.

On a separate line, we note that the BIOS FlashBack function can be called differently depending on the manufacturer: in motherboards from ASRock and Asus - BIOS FlashBack, from Gigabyte - Q-Flash Plus, from MSI - Flash BIOS, etc.
Asus TUF GAMING B450M-PLUS II often compared
Asus TUF B450M-PLUS GAMING often compared