Dark mode
USA
Catalog   /   Computing   /   Desktop PCs

Comparison Intel NUC 12 Pro NUC12WSHI3 vs Asus ExpertCenter PN64 PN64-BB3012MD

Add to comparison
Intel NUC 12 Pro (NUC12WSHI3)
Asus ExpertCenter PN64 (PN64-BB3012MD)
Intel NUC 12 Pro NUC12WSHI3Asus ExpertCenter PN64 PN64-BB3012MD
from $937.52 
Outdated Product
Outdated Product
TOP sellers
Product typenettopnettop
CPU
Typeportableportable
SeriesCore i3Core i3
Model1220P1220P
Code nameAlder Lake (12th Gen)Alder Lake (12th Gen)
Cores1010
Threads1212
Speed1.1 GHz1.1 GHz
TurboBoost / TurboCore4.4 GHz4.4 GHz
Passmark CPU Mark14397 score(s)14759 score(s)
Memory
RAMsold separately8 GB
Memory typeDDR4DDR5
Speed3200 MHz4800 MHz
Number of slots22
Max. memory support64 GB32 GB
Graphics card
Graphics card typeintegratedintegrated
Graphics card modelIris Xe GraphicsIris Xe Graphics
Storage
Sold Separately
Drive typeSSD
Drive capacity256 GB
NVMe
M.2 connector
Back panel
Connectors
HDMI output
 
 
HDMI output 2 pcs
v 2.0
DisplayPort v 1.4
USB 2.01
USB 3.2 gen11
USB 3.2 gen21
USB C 3.2 gen21
USB42
Thunderboltv4 2 pcs
Alternate Mode
Monitors connection44
Front Panel
Optical driveis absentis absent
mini-Jack (3.5 mm)
USB 3.2 gen12
USB 3.2 gen22
USB C 3.2 gen21
Multimedia
LAN (RJ-45)2.5 Gbps2.5 Gbps
LAN controllerIntel I225V
Wi-FiWi-Fi 6 (802.11ax)Wi-Fi 6 (802.11ax)
Bluetooth++
AudiochipRealtek ALC3251 HD
Kensington / Noble lock
General
Keyboard and mouse+
PSU power120 W
Preinstalled OSno OSno OS
VESA mount
Materialplasticplastic
Dimensions (HxWxD)54x117x112 mm58x120x130 mm
Weight1 kg1 kg
Color
Added to E-Catalogjanuary 2024march 2023

Passmark CPU Mark

The result shown by the PC processor in the test (benchmark) Passmark CPU Mark.

Passmark CPU Mark is a comprehensive test that allows you to evaluate CPU performance in various modes and with a different number of processed threads. The results are displayed in points; the more points, the higher the overall performance of the processor. For comparison: as of 2020, in low-cost solutions, the results are measured in hundreds of points, in mid-range models they range from 800 – 900 to more than 6,000 points, and individual top-end chips are capable of showing 40,000 points or more.

RAM

The amount of random access memory (RAM, or RAM) that came with your computer.

The overall performance of the PC directly depends on this parameter: ceteris paribus, more RAM speeds up work, allows you to cope with more resource-intensive tasks, and facilitates the simultaneous execution of numerous processes. As for specific numbers, the minimum volume required for the stable operation of a general-purpose PC nowadays is 4 GB. Smaller amounts are enough for microcomputers and thin clients, and at least 8 GB is installed in gaming systems, on the contrary. 16 GB and even more so 32 GB are already very solid volumes, and in the most powerful and performant systems there are values \u200b\u200bof 64 GB and even more. Also on the market you can find configurations without RAM at all — for such a device, the user can choose the amount of memory at his discretion; for a number of reasons, this configuration is especially popular in nettops.

Note that many modern PCs allow for an increase in the amount of RAM, so it does not always make sense to purchase an expensive device with a large amount of "RAM" — sometimes it is more reasonable to start with a simpler model and expand it if necessary. The possibility of upgrading in such cases should be clarified separately.

Memory type

The type of RAM used in the computer. This indicator describes both the general level of "RAM" and the possibilities for replacing and upgrading it: different types of RAM are not compatible with each other.

Here are the types of memory that are relevant for modern PCs:

DDR3. The third generation of RAM with the so-called double data transfer. Some time ago, this standard was the most popular in computer technology, but now it is increasingly losing ground to newer and more advanced standards, primarily DDR4. In compact computers, there is a "mobile", energy-saving version of this memory standard — LPDDR3.

DDR3L. A modification of DDR3 memory that supports operation at a reduced voltage — 1.35 V instead of 1.5 V (Low Voltage — hence the index L). Lower voltage improves performance. These modules are compatible with classic DDR3 slots.

DDR4. Further, after DDR3, the development of the DDR standard, released in 2014. It features both increased performance and increased volumes — the capacity of one bar can be from 2 to 128 GB. Thus, the maximum amount of RAM in most PCs is limited more by the capabilities of the motherboard than by the characteristics of existing brackets. DDR4 is very popular in modern computer technology, including desktop PCs.

Speed

The clock speed of the RAM that comes with the PC. This is one of the parameters that determine the capabilities of RAM: with the same amount and type of memory (see above), a higher clock frequency will mean faster performance. However such details are rarely required by an ordinary user, but they are important for enthusiasts and professionals.

Also note that this indicator can be used to determine the possibilities for upgrading the system: the motherboard will be able to work normally with brackets that have the same or lower clock frequency, but compatibility with faster memory should be specified separately.

Max. memory support

The maximum amount of RAM that can be installed on a computer. It depends, in particular, on the type of memory modules used, as well as on the number of slots for them. Paying attention to this parameter makes sense, first of all, if the PC is bought with the expectation of upgrading RAM and the amount of actually installed memory in it is noticeably less than the maximum available

So the amount of maximum installed memory depends on the number of slots in the PC and can be from 16 GB(a modest PC) to 64 GB and above. The most popular on the market are PCs with a maximum installed 32 GB of memory.

Sold Separately

The absence of any drive in the PC package. This option is useful for those who would like to complete the system on their own, without relying on the choice of the manufacturer: after all, when purchasing a drive separately, you can choose not only its type and volume (see both points below), but even a specific model. Also, such a configuration will be useful if you already have a drive for the desired system — for example, a hard drive from a previous computer. By installing it, you can not overpay for an additional HDD or SSD.

Drive type

The type of storage device that is installed in the computer.

Note that many PCs allow you to add a complete drive or even completely replace it, but it is more convenient to buy a suitable configuration initially and not bother with re-equipment. In terms of types, traditional hard disk drives ( HDD) are increasingly losing ground to SSD solid-state modules nowadays. In addition, HDD + SSD combinations are quite popular (including those using advanced Intel Optane and Fusion Drive technologies). But solutions such as SSHD and eMMC have practically fallen into disuse. Let's take a closer look at these options:

— HDD. Classic hard disk. The key advantage of such drives is their low cost per unit of volume — this allows you to create capacious and at the same time inexpensive storage. On the other hand, HDDs are noticeably inferior to SSDs in terms of speed, and they also do not tolerate shocks and shocks. Thus, this type of media is less and less used in its pure form — it is much more common to find a combination of a hard drive with an SSD module (see below).

— SSD. Solid state drives based on flash memory. With the same volume, an SSD is much more expensive than an HDD, but this is justified by a number of advantages. First, such drives are much faster than hard drives; specif...ic performance may be different (depending on the type of memory, connection interface, etc.), however, even inexpensive SSDs outperform advanced HDDs in this indicator. Secondly, solid-state memory has no moving parts, which offers several advantages at once: lightness, compactness, shock insensitivity and low power consumption. And the cost of such memory is constantly decreasing as technology advances. So more and more modern PCs are equipped with just such drives, and these can be configurations of any level — from low-cost to top ones.

— HDD+SSD. The presence in one system of two drives at once — HDD and SSD. Each of these varieties is described in more detail above; and their combination in one system allows you to combine the advantages and partially compensate for the shortcomings. For example, an SSD (which usually has a fairly small capacity) can store system files and other data for which speed of access is important (for example, work applications); and HDD is well suited for large volumes of information that do not require particularly high speed (a typical case is video files and other multimedia content). In addition, the solid-state module can be used not as a separate storage, but as an intermediate cache to speed up the hard drive; however, this usually requires special software settings (whereas the "two separate drives" mode is most often available by default).
We also emphasize that in this case we are talking about “ordinary” SSD modules that do not belong to the Optane and Fusion Drive series; the features of these series are detailed below.

HDD + Optane. Combination of a traditional hard drive with an Intel Optane series SSD. For more information about the general features of this combination, see "HDD + SSD" above. Here, we note that “optains” differ from other SSD drives in a special three-dimensional structure of memory cells (3D Xpoint technology). This allows you to access data at the level of individual cells and do without some additional operations, which speeds up the speed and reduces latency, and also has a positive effect on memory life. The second difference is that Optane is usually used not as a separate drive, but as an auxiliary buffer (cache) for the main hard drive, designed to increase speed. Both drives are perceived by the system as a single device. The disadvantage of this type of SSD is traditional — a rather high cost; it is also worth noting that its superiority is most noticeable at relatively low loads (although it does not disappear completely with increasing load).

— HDD + Fusion Drive. A kind of HDD + SSD bundle (see above), used exclusively in Apple computers and optimized for the proprietary macOS operating system. However, it would be more correct to compare this option with the “HDD + Optane” combination (also described above): for example, both drives are perceived by the system as a single unit, and the Fusion Drive module is also used as a high-speed cache for the hard drive. However, there are also significant differences. Firstly, Fusion Drive has significant volumes and is used not only as a service buffer, but also as part of a full-fledged drive — for permanent data storage. Secondly, the total volume of the entire bundle approximately corresponds to the sum of the volumes of both drives (minus a couple of "service" gigabytes). This type of drive is expensive, but the efficiency and convenience are well worth the price.

— SSHD. The so-called hybrid drive: a device that combines a hard drive and a small SSD cache in one case. Some time ago, this solution was quite popular, but now it is almost never found, having been supplanted by a more practical option — various types of HDD + SSD.

— eMMC. A type of solid-state memory originally developed for portable gadgets such as smartphones and tablets. It differs from SSD, on the one hand, in lower cost and low power consumption, on the other hand, in relatively low speed and reliability. Because of this, this type of drive is used extremely rarely — in particular, in single models of microcomputers and thin clients (see "Type").

— HDD + eMMC. Combination of hard disk drive (HDD) and eMMC solid state module. These types of drives are described in detail above; here we note that this option is extremely rare, and in rather specific devices — monoblocks (see "Type") with a transformer function, where the screen is a removable tablet that can be used autonomously. In such a tablet, an eMMC module is usually installed, and a hard drive is placed in the stationary part. However, another option is also possible — a bundle similar to HDD + SSD (see above), where eMMC is used to reduce cost and/or power consumption.

— SSD + eMMC. Another combination of the two types of drives described above. It was used in single monoblocks and nettops — mainly to reduce the cost; Today, this variant is almost non-existent.

Drive capacity

The volume of the main drive supplied with the PC. For models with combined storages (for example, HDD+SSD, see "Drive type"), in this case, the main one is considered to be a more capacious hard drive; and if there are two HDDs in the kit, then they usually have the same capacity.

From a purely practical point of view, the more data the drive holds, the better. So the choice for this indicator rests mainly on the price: a larger capacity inevitably means a higher cost. In addition, we recall that SSD-modules in terms of gigabytes of capacity are much more expensive than hard drives; so you can only compare carriers of the same type by the combination of volume and cost.

As for the specific capacity, a volume of 250 GB or less in modern PCs can be found mainly among SSDs. Hard drives of this size are almost never found, for them a capacity of 250 to 500 GB is still considered quite modest. 501 – 750 GB is a pretty good value for an SSD, and among them it is also mainly used. 751 GB — 1 TB is an impressive figure for an SSD and an average for hard drives, 1.5 – 2 TB is a very solid capacity even for an HDD. And a very high capacity — more than 2 TB — paradoxically, is found even among pure SSDs: such drives are installed in high-end workstations, where speed...is no less important than capacity.

Connectors

In most desktop PCs, this assortment is determined both by connectors on the "motherboard" and on a discrete graphics card, among which VGA, DVI, HDMI output(there are models where HDMI 2 pcs), HDMI input, DisplayPort, miniDisplayPort. More details about them.

— VGA. He's D-Sub. Analogue video output with maximum resolution up to 1280x1024 and no audio support. It is rarely installed in modern devices, but it can be useful for connecting certain models of projectors and TVs, as well as outdated video equipment.

— DVI. Modern PCs can be equipped with both pure digital DVI-D and hybrid DVI-I; the latter also allows analogue connection, including work with VGA-devices through an adapter, and in analogue format has a resolution of 1280x1024. In digital DVI, this parameter can reach 1920x1200 in single-link mode (single link) and 2560x1600 in dual-link mode. The presence of a dual-channel mode must be specified separately.

— HDMI output. Digital output originally designed for HD content — high-definition video and multi-channel audio. The HDMI interface is almost mandatory for modern HD multimedia technology, and it is also extremely popular in computer monitors — so the presence of such an output on a PC provides ve...ry extensive features for connecting external screens and even high-end audio devices. Some devices may even have 2 HDMI outputs.

— HDMI input. Your PC has at least one HDMI input. See above for details on the interface itself; here we note that it is the inputs of this format that are found mainly in monoblocks (see "Type"). At a minimum, this allows you to use the monoblock's own display as a screen for another device (for example, as an external monitor for a laptop). However, there are other, more specific options for using the HDMI input — for example, recording an incoming video signal, or transferring (switching) it to one of the PC video outputs.
Both the HDMI inputs and outputs in modern PCs may correspond to different versions:
  • v 1.4. The earliest standard widely used today. Supports resolutions up to 4096x2160 and frame rates up to 120 fps (however, only at a resolution of 1920x1080 or lower), and can also be used to transmit 3D video. In addition to the original version 1.4, you can find improved v 1.4a and v 1.4b — in both cases, the improvements affected mainly the work with 3D.
  • v2.0. The standard, also known as HDMI UHD, was the first to introduce full support for UltraHD 4K, with frame rates up to 60 fps, as well as compatibility with a 21:9 aspect ratio. In addition, the number of simultaneously transmitted channels and audio streams has increased to 32 and 4, respectively. It is also worth noting that initially version 2.0 did not provide support for HDR, but it appeared in update v 2.0a; if this feature is important to you, it's ok to clarify which version 2.0 is provided in the PC, the original or the updated one.
  • v2.0b. The second update of the above v 2.0. The main update was the expansion of HDR capabilities, in particular, support for two new formats.
  • v2.1. It is also HDMI Ultra High Speed: the bandwidth has been increased to such an extent that it became possible to transfer 10K video at 120 fps (not to mention more modest resolutions) as well as work with extended colour schemes up to 16 bits. The latter may come in handy for some professional tasks. However, note that all the features of HDMI v 2.1 are available only when using cables designed for this standard.
— Display port. A digital media interface similar in many respects to HDMI, but mainly used in computer technology — in particular, it is widely used in Apple computers and monitors. One of the interesting features of this standard is the ability to work in the daisy chain format — connecting several screens to one port in series, transmitting its own signal to each of them (although this function is not technically available with all screens for this interface). DisplayPort is also on the market in several versions, the current ones are as follows:
  • v 1.2. The earliest widely used version (2010). However, already in this version, 3D compatibility and the daisy chain mode appeared. The maximum fully supported resolution when connecting a single monitor is 5K (30 fps), transmission up to 8K is possible with certain restrictions; a frame rate of 60 Hz is supported up to a resolution of 3840x2160, and 120 Hz — up to 2560x1600. And when using daisy chain, you can connect up to 2 2560x1600 screens at 60 frames per second or up to 4 1920x1200 screens at the same time. In addition to the original version 1.2, there is an improved v 1.2a, the main innovation of which is support for AMD FreeSync, a technology for synchronizing the monitor's frame rate with the signal from an AMD graphics card.
  • v 1.3. An update introduced in 2014. The increased bandwidth made it possible to provide full, without restrictions, support for 8K at 30 fps, as well as transmit 4K images at 120 fps, sufficient for 3D work. Resolutions in daisy chain mode have also increased — up to 4K (3840x2160) at 60 fps for two screens and 2560x1600 at the same frame rate for four. Of the specific innovations, it is worth mentioning the Dual Mode mode, which allows you to connect HDMI and DVI devices to such a connector through the simplest passive adapters.
  • v 1.4. The newest version widely used in modern PCs. Formally, the maximum connection speed has not increased compared to the previous version, but thanks to signal optimization, it became possible to work with 4K and 5K resolutions at 240 fps and with 8K at 120 fps. However for this, the connected screen must support DSC encoding technology — otherwise, the available resolutions will not differ from version 1.3. In addition, v 1.4 added support for a number of special features, including HDR10, and the maximum number of simultaneously transmitted audio channels increased to 32.
— miniDisplayPort. A smaller version of the DisplayPort connector described above, may also correspond to different versions (see above). Note that the same hardware connector is used in the Thunderbolt interface versions 1 and 2, and the graphic part of this interface is based on DisplayPort. Therefore, even some Thunderbolt monitors can be directly connected to miniDisplayPort (although it is desirable to clarify this possibility separately).

— COM port (RS-232). Serial port, originally used to connect dial-up modems and some peripherals, in particular, mice. However, today this interface is used as a service interface in various devices — TVs, projectors, network equipment (routers and switches), etc. Connecting to a PC via RS-232 allows you to control the operation parameters of an external device from a computer.
Asus ExpertCenter PN64 often compared