Dark mode
Catalog   /   Tools & Gardening   /   Machines & Equipment   /  Welders

Welders: specifications, types


The type of welding machine determines the features of its design and purpose.

Transformer. The simplest type of welding machine. The principle of operation in this case is as follows: the input mains voltage is fed directly to the transformer winding, which lowers it to the open circuit voltage (see below). In addition to alternating current, transformers can also cook on direct current — in such models, the simplest rectifier with a stabilizer is usually used; when using alternating current, its frequency remains the same as in the network. The main advantages of transformers are high reliability combined with low cost and simplicity of design. At the same time, the functionality of such devices is rather limited — in particular, of the types of welding, there are rarely any other than manual arc welding (see "Type of welding"); and the quality of work is relatively low due to the instability of the current supplied to the electrode. Yes, and the weight of transformers, compared with inverters, is quite high. In general, this type of welding machine is intended mainly for simple work that does not require high precision.

Inverter. A type of welding machine designed to overcome some of the major disadvantages of transformers, such as heavy weight and uneven seams. The key difference between inverters is that the current to the winding of the step-down transformer is not supplied direc...tly from the network, but through special control circuits (which, in fact, are an inverter in the narrow sense of the word). When passing through these circuits, the current is first converted to direct, and then back to alternating, but with an increased frequency of the order of tens of kilohertz (for comparison, the frequency of household alternating current is 50 Hz), and this high-frequency current is already supplied to the winding. This made it possible to significantly reduce the dimensions of the transformer coils and thus reduce the weight and dimensions of the entire device — many inverters can be safely carried on a shoulder strap. A high frequency provides a much more stable arc and a quality weld both when welding with alternating current and when using direct current (for both options, see the “Welding Current” paragraph for more details). In addition, this scheme allows the use of almost all modern types of welding (see below). Among the disadvantages of inverter devices, one can note the high cost due to the complexity of the design. However, if you need a device for high-quality professional welding, you cannot do without an inverter.

Semiautomatic. This term refers to a type of welding transformers (see above), in which the welding process is partially automated. The electrode for a semiautomatic device has the form of a thin wire (usually not thicker than 1.2 mm) wound on a coil; during operation, this wire is fed to the nozzle automatically, as it is consumed. This is much more convenient than with conventional welding — after all, the operator does not have to control the length of the electrode himself and adjust it manually, the electrode itself has to be changed much less often, and semi-automatic welding also has some other advantages (for more details, see "Type of welding"). Otherwise, semiautomatic devices are completely similar to conventional transformers.

Semi-automatic inverter. As the name implies, this category includes inverter-type machines with an electrode supply system typical for semi-automatic machines. For more details, see the relevant paragraphs above, but here we note that this option can be called the most advanced among modern general-purpose welding units.

Welding type

Among the main types of welding can be called manual arc (MMA), semi-automatic (MIG / MAG), argon-arc (TIG), spot (SPOT), spot (STUD) and plasma cutting (PLASMA) welding.

— MMA. Welding using an electric arc and a consumable electrode with a special coating. The electrode is fed and moved manually by the welder. Shielding gas supply is not provided; protection of the weld pool from air can be carried out due to the combustion of the coating deposited on the electrode. This welding technology allows the use of the simplest equipment, it is undemanding to the quality of the current and the design of the welding machine. On the other hand, the quality of the resulting weld is highly dependent on the skills of the welder, the productivity of the process is relatively low, and this technology is poorly suited for non-ferrous metals — its main purpose is the welding of steel and cast iron.

— MIG/MAG. Partially automated welding in an inert (MIG) or active (MAG) gas environment. The gas enters directly to the place of welding through the burner and, when the arc burns, forms a protective sheath that covers the weld pool from exposure to air. And the term "semi-automatic" means that filler material in the form of a thin wire is also automatically supplied to t...he place of work (but you need to move the burner manually). The choice between inert and active gas is made depending on the materials being welded — for example, the first option is usually used with non-ferrous metals, the second with steel. Such welding provides a much better quality of the seam than manual welding, and also increases the convenience and speed of work — in particular.

— TIG. Manual welding with a non-consumable electrode in an inert gas environment. With such welding, the electric arc melts only the edges of the parts to be joined, and the final seam is formed from them, without using the electrode material (in some cases, additives in the form of pieces of metal of the appropriate shape can be used). To protect the seam from exposure to air, a protective gas, usually argon, is supplied to the heating point. TIG welding is well suited for stainless steel as well as copper and aluminium alloys. It allows you to create a more accurate seam than the same MMA, and more precisely control the process. On the other hand, this technology is quite demanding on the skills of the welder, and the speed of work is relatively low.

— SPOT. Electric welding, carried out due to the point impact of high currents. It is used for connecting thin sheets of metal (mainly up to 3 mm), as well as for attaching pins and studs to a flat base. When connecting sheets of metal, two electrodes with a relatively small diameter tightly press the workpieces against one another, after which a current is passed through them with a force of the order of several kiloamperes; the metal at the point of contact is heated to the melting point, which ensures the connection. When attaching pins and studs, the role of one of the electrodes is played by the pin itself, the role of the second is played by a flat base. SPOT type welding is very popular in car manufacturing and car service: it is in this way that some elements of car bodies are connected, and it can also be useful for straightening. There are unilateral and bilateral. The first uses a single electrode, which is pressed against the workpiece with force. The main advantage of this option is the ability to work with surfaces that are accessible only from one side — for example, car doors. Actually, one of the main areas of application for one-sided SPOT welding is a car service, in particular, straightening car bodies and other car surfaces. The second welding (two-sided) involves the use of a pair of electrodes that compress the junction from both sides, like a vice. This variant is better suited for work with thick parts or where a high reliability of the connection is required — due to the compression described, it is easier to achieve the desired depth of the weld pool. On the other hand, its use requires access to both sides of the workpiece. Note that some models of welding machines are able to work according to one and the other scheme; this makes the device very versatile, but may come at a cost.

— STUD. Spot welding technology using a lifting (pulling) arc. Mainly used for flat base plus stud connections. The welding process itself takes place in the following way: the stud is pressed against the base; the current is switched on; the pin rises; an arc ignites between it and the base, which melts the surface of the base; the hairpin is lowered into the melt; the current is turned off, the metal freezes. STUD welding involves the use of mechanized welding torches with a spring or hydraulic system that raises and lowers the stud, and an inert gas or flux is used to protect the joint from atmospheric air.

– PLASMA. Cutting metal using a stream of heated plasma — a highly ionized gas. To do this, gas (inert or active) is supplied to the place of work, which, due to the influence of an electric arc, is ionized, heated and accelerated. The plasma temperature can exceed 10,000 °C, and the speed is 1,000 m/s, which makes it possible to work with almost any metals and alloys, including refractory ones. At the same time, cutting is carried out quickly, the cut is clean and neat, and the cutting depth can reach 200 mm. The main disadvantage of plasma cutting is the high cost of equipment.

Welding current

The type of current used by the machine directly in the welding process.

Variable. A kind of current that is familiar to many primarily from ordinary household sockets: it has an interchangeable polarity, the “plus” and “minus” on the contacts change places with a high frequency. For example, in a household network, the frequency is 50 Hz, and at the output of inverter devices (see "Type") it can rise to several tens of kilohertz. The main advantage of alternating current is that the concept of “polarity” does not apply to it and it is impossible in principle to confuse it when connected. At the same time, the constant reversal of the current direction increases the amount of welding spatter and reduces the quality of the weld. This shortcoming is partially eliminated in the mentioned inverters, due to high frequency currents, however, the quality of welding with alternating current is still somewhat lower than when using direct current. As a result, this option is most widely used in manual arc welding (see "Type of welding") of ferrous metals, in other cases it is rare or not used at all.

Permanent. A current that has a constant direction — from one pole to another, without changing them (similar to how this happens, for example, when using batteries). Such a current, due to its uniformity, creates much less spatter than alternating current, and provides a better quality of the seam....It is also better suited for stainless steel, non-ferrous metals and some specific applications (eg semi-automatic welding, see Welding type). However, as for batteries, the concept of polarity is relevant for direct current devices: “minus” can be connected both to the electrode (so-called direct polarity) and to the material being welded (respectively, reverse). Each of the options is used for certain materials and types of work, so when using direct current, you also have to pay attention to the correct connection. In addition, the direct current devices themselves are more complicated and expensive due to the need to use rectifiers.

— Variable/constant. Devices capable of using both of the above types of current in operation. They are the most versatile, however, and cost accordingly.

Input voltage

The voltage of the power source to which the welding machine is designed to be connected. Note that the most common options today differ not only in voltage as such, but also in the features of the connection itself:

1 phase(230 V). The voltage used in normal household sockets. Welding machines for 230 V are by far the most widespread: such power is enough to operate models of both low and medium power, and finding an outlet is usually not a problem. The only limitation on their use is that the power consumption is usually quite high, which increases the load on the power grid accordingly. Therefore, high-quality electrical wiring is required for connection, and for models with more than 5 kW, it may also be necessary to connect directly to the shield. The term "single phase" means that one pair of contacts "zero" — "phase" is used when connecting.

3 phases(400 V). This voltage is used in specialized production facilities: workshops, workshops, etc.; outside of such premises it is very rare. The 400 V network provides more power than 230 V, however, such power is not needed very often — usually for the largest jobs with complex and/or thick materials. Three-phase devices are not compatible with ordinary household sockets, not only because of the low voltage in the network, but also by the connection method — this requires three pairs of “zero” — “phase” contacts (hence the name). A...s a result, pure 400V models are not widely used — mostly industrial grade devices for which high power is critical.

1 phase (230 V) / 3 phases (400 V). Universal devices capable of working with both of the above input voltage options. To date, most models with the ability to work from three phases belong to this particular variety. Note that this can include both high-power devices, where single-phase power can be called a “backup option in case of emergency”, and portable low-power units — in them, respectively, three phases are already an additional option for maximum versatility.

Min. input voltage

The minimum actual input voltage at which the welding machine remains operational.

Such information is useful primarily for working in unstable networks, where the voltage tends to “sag” a lot, as well as from autonomous power sources (for example, generators), which can also produce voltage below the nominal one.

Power consumption

The maximum power consumed by the welding machine during operation, expressed in kilowatts (kW), that is, thousands of watts. In addition, the designation in kilovolt-amperes (kVA) can be used, see below for it.

The higher the power consumption, the more powerful the current the device is capable of delivering and the better it is suitable for working with thick parts. For different materials of different thicknesses, there are recommendations for current strength, they can be clarified in specialized sources. Knowing these recommendations and the open circuit voltage (see below) for the selected type of welding, it is possible to calculate the minimum required power of the welding machine using special formulas. It is also worth considering that high power creates corresponding loads on the wiring and may require connection directly to the shield.

As for the difference between watts and volt-amperes, the physical meaning of both units is the same — current times voltage. However, they represent different parameters. In volt-amperes, the total power consumption is indicated — both active (going to do work and heat individual parts) and reactive (going to losses in coils and capacitors). This value is more convenient to use to calculate the load on the power grid. In watts, only active power is recorded; according to these numbers, it is convenient to calculate the practical capabilities of the welding machine.

Power consumption

Power consumption of the welding machine, expressed in kilovolt-amperes.

kVA is a unit of power used in welding machines along with the more traditional kilowatts. The physical meaning of both units is the same — current multiplied by voltage; however, they denote different parameters. So, in kilowatts, only a part of the total power consumption is recorded — active power (goes to do work and to losses due to heating of individual parts); according to this indicator it is convenient to calculate the practical capabilities of the device. And kilovolt-amperes denote the total energy consumption — it also takes into account reactive power (it goes to losses in coils and capacitors during the operation of alternating current circuits). This data is useful for calculating the total load on the network or other power source.

The apparent power input in kVA will always be greater than the power in kW. However, some manufacturers go to the trick and indicate full power not at full, but at partial (for example, half) load. This gives the impression of efficiency, but is incorrect from a technical point of view. As for the ratio of energy consumption, the active power in kW is often 20-30% lower than the apparent power in kVA. So, in terms of kilovolt-amperes, it is quite possible to evaluate the performance of the unit.

As for specific values, in the most modest models they do not exceed 3 kVA. An indicator up to 5 kVA is considered low, up to 7 kVA — average, and in the most powerful units, the power consumption can reach 10 kVA or even more.

Open circuit voltage

The voltage supplied by the welding machine to the electrodes. As the name suggests, it is measured without load — i.e. when the electrodes are disconnected and no current flows between them. This is due to the fact that at a high current strength characteristic of electric welding, the actual voltage on the electrodes drops sharply, and this does not make it possible to adequately assess the characteristics of the welding machine.

Depending on the characteristics of the machine (see "Type") and the type of work (see "Type of welding"), different open circuit voltages are used. For example, for welding transformers, this parameter is about 45 – 55 V (although there are higher voltage models), for inverters it can reach 90 V, and for semi-automatic MIG / MAG welding, voltages above 40 V are usually not required. Also, the optimal values \u200b\u200bdepend on type of electrodes used. You can find more detailed information in special sources; here we note that the higher the open-circuit voltage, the easier it is usually to strike the arc and the more stable the discharge itself.

Also note that for devices with the VRD function (see "Advanced"), this parameter indicates the standard voltage, without reduction through VRD.

Min. welding current

The smallest current that the device is able to supply through the electrodes during operation. For different materials, different thicknesses of the parts to be welded and different types of welding itself, the optimal welding current will be different; there are special tables that allow you to determine this value. The general rule is that a high current is far from always useful: it gives a rougher seam; when working with thin materials, it is possible to melt through the junction instead of connecting the parts, not to mention excessive energy consumption. Therefore, if you have to work with parts of small thickness (2-3 mm), before choosing a welding machine, it makes sense to make sure that it is capable of delivering the desired current without “busting”.

Maximum welding current

The highest current that the welding machine is capable of delivering through the electrodes during operation. In general, the higher this indicator, the thicker the electrodes the device can use and the greater the thickness of the parts with which it can work. Of course, it does not always make sense to chase high currents — they are more likely to damage thin parts. However, if you have to deal with large-scale work and a large thickness of the materials to be welded, you simply cannot do without a device with the appropriate characteristics. Optimum welding currents depending on materials, type of work (see "Type of welding"), type of electrodes, etc. can be specified in special tables. As for specific values, in the most “weak” models, the maximum current does not even reach 100 A, in the most powerful ones it can exceed 225 A and even 250 A.

Maximum welding current (duty cycle 100%)

The highest welding current at which the machine is able to operate with a duty cycle of 100%.

See below for more information on the frequency of inclusion (PV). Here we recall that “100% duty cycle” means continuous operation, without shutdowns for cooling. Thus, the maximum welding current at 100% duty cycle is the highest current at which the machine can be used without interruption. Usually, this current is much lower than the maximum.

Duty cycle

The duty cycle allowed for the welding machine.

Almost all modern welding machines require breaks in operation — for cooling and general "recovery". The frequency of inclusion indicates what percentage of the time of the total work cycle can be used directly for work. In this case, 10 minutes is usually taken as a standard cycle. Thus, for example, a device with a duty cycle of 30% will be able to work continuously for less than 3 minutes, after which it will need at least 7 minutes of interruption. However, for some models, a cycle of 5 minutes is used; these nuances should be clarified according to the instructions.

In general, high frequency is required mainly for high-volume professional work; with a relatively simple application, this parameter does not play a decisive role, especially since you have to take breaks during work. As for specific values, the mentioned 30% is a very limited figure, typical mainly for entry-level devices. A value of 30 – 50% is also low; in the range of 50 – 70% is the majority of modern devices, and the most "hardy" models provide a frequency of more than 70%.

Maximum electrode diameter

The largest diameter of the electrode that can be installed in the welding machine. Depending on the thickness of the parts, the material from which they are made, the type of welding (see above), etc. the optimal electrode diameter will be different; there are special tables that allow you to determine this value. Large diameter may be required for thick materials. Accordingly, before purchasing, you should make sure that the selected model will be able to work with all the necessary electrode diameters.

In modern welding machines, an electrode diameter of 1 mm or less is considered very small, 2 mm — small, 3 mm and 4 mm — medium, and powerful performant models use electrodes of 5 mm or more.

Min. wire diameter

The minimum diameter of the welding wire that the machine can work with.

Wire electrodes are used in semi-automatic models (see "Type"), mainly for MIG/MAG welding (see "Type of welding"). The thinner the electrode, the better it is suitable for delicate work where a small thickness and width of the seam is required. Specific recommendations on the diameter of the wire for a particular task can be found in special sources.

Maximum wire diameter

The maximum diameter of the welding wire that the machine can work with.

Wire electrodes are used in semi-automatic models (see "Type"), mainly for MIG/MAG welding (see "Type of welding"). Specific recommendations on the diameter of the wire for a particular task can be found in special sources, but here we note that a large electrode thickness is important for rougher jobs that require a thick seam and a large amount of material. In general, the wire is noticeably thinner than traditional electrodes. The standard option here is considered to be a maximum diameter of 1 mm, smaller values ( 0.8 mm and 0.9 mm) are found mainly in low-power devices for fine work, and 2 mm or more — on the contrary, in advanced performant units.

Wire feed speed

Wire feed speed provided by the semi-automatic model (see "Type"). The higher the speed (with the same thickness) — the faster you can lead the electrode over the seam and the less time the process takes. On the other hand, too fast feed makes it difficult to work with seams of small length. Detailed information on the optimal wire feed speed can be found in special sources.

Maximum stud diameter

The largest diameter of studs that the machine can work with, more precisely, studs that can be loaded into a spot welding gun (STUD or SPOT, see "Type of welding"). For details on this method of operation, see "Type of welding"; here we note that in most cases the diameter of the stud does not exceed 8 mm — a large thickness is rarely required in fact, moreover, it would require significant power.

Maximum cutting thickness (PLASMA)

The largest thickness of material that the machine can cut in plasma cutting mode. For more information about this mode, see "Type of welding". Note that the maximum thickness is often given for a certain average material in terms of durability; with refractory substances, the efficiency of work may be somewhat lower (at least it will take more time to cut through).

Air flow (PLASMA)

Air (or other gas) consumption when the device is operating in PLASMA mode.

Recall that in this mode, cutting of materials is carried out due to a heated jet of ionized gas (plasma), which moves at high speed. In this paragraph, it is precisely the consumption of this gas that is indicated. It should be noted, however, that an increase in cutting efficiency (increasing depth and/or speed) inevitably increases consumption as well.

Maximum part thicknesses (SPOT)

The greatest thickness of flat parts that the welding machine can effectively join in SPOT welding mode. The thickness limitation is a consequence of the fact that the apparatus in this mode operates, in fact, through the details; for more on this, see "Type of welding".

Note that in universal devices — with support for both one- and two-sided welding (see "SPOT") — the value of this parameter is usually different depending on the welding method. More precisely, for one-sided it is usually half as much as for two-sided — after all, in the first case, both parts have to be melted by one electrode. Both options are usually given in the specifications; however, if there is only one option in a dual-mode device, most likely it is indicated for two-sided welding.

More features

Hot start. A function that facilitates arc ignition: when the electrode touches the welding spot, the welding current increases for a short time, and when the machine enters the mode, it returns to standard parameters.

Forcing the arc (Arc Force). Devices with this function are able to increase the welding current with a critical reduction in the distance between the electrode and the parts to be welded. This increases the rate of melting of the electrode and the depth of the weld pool, which helps to avoid sticking.

Protection against sticking (Anti-Stick). In this case, a protective measure is implied in case sticking of the electrode still could not be avoided: the automation of the welding machine significantly reduces the welding current (or even turns it off), which makes it easy to disconnect the electrode, and in addition — to avoid unnecessary energy consumption and overheating devices.

Decreased voltage x. X. (VRD). This function is used to significantly reduce the open circuit voltage of the machine. When the VRD is turned on, the open electrodes receive not a standard voltage of several tens or even hundreds of volts, but only 9-12 V. At the same time, the operating parameters are restored automatically — when the electrode touches the workpiece and a high current occurs; and when the arc is e...xtinguished, the voltage again drops to the minimum values. This format of work provides two main advantages. Firstly, it provides additional safety: in particular, closing contacts with a hand or other part of the body does not lead to a serious electric shock, and the risk of such an injury in high humidity is also reduced. Secondly, lower voltage helps to save energy.

Pulse welding. Usually, this refers to gas-shielded arc welding (MIG / MAG or TIG), carried out in the so-called pulsed mode. With this format of operation, the main welding current, which is relatively low, is supplemented by high-power pulses (7-10 times higher than the background current), which follow at a frequency of several tens per second. There are also various modifications of the pulse mode, with more complex current control; however, the basic principle remains the same. Anyway, the advantages of pulsed welding are the uniformity of both the arc itself and the resulting seam, as well as an improvement in the overall quality of the joint: pulses help to mix the metal in the weld pool and eliminate pores, oxides and other defects. The disadvantage of this function is traditional — an increase in the cost of welding machines.

2/4-stroke mode. Possibility to choose the control mode of the device — two-stroke or four-stroke. This allows you to further adjust the control to the specifics of the situation. Recall that in push-pull mode, the device works while the button is pressed, and turns off when it is released; this is especially useful for short seams and other similar tasks when welding does not need to be switched on for a long time. In turn, with a four-stroke control format, the first press-release turns on welding, the second turns it off. This method is indispensable for long-term work, when it would be tiring to keep the button pressed all the time.

Synergetic management. A function mainly used when operating in the pulse mode described above. Synergic control can also be called "intelligent": it is carried out using built-in electronic microcontrollers that control most of the settings and automatically change them if necessary. In fact, it looks like this: it is enough for the welder to set a number of inputs (type and thickness of the material, composition of the shielding gas, wire thickness, etc.), and based on this, the machine will automatically select the optimal operating parameters (output voltage, pulse configuration, feed rate wire, etc.). Moreover, if one of the inputs changes in the course of work, the other parameters of the work change accordingly.
Synergic control greatly simplifies the operation of the device and at the same time improves its quality, reducing the likelihood of burns and other serious errors. This is especially convenient for inexperienced welders who are not accustomed to dealing with fully manual parameter settings; however, even professionals appreciate the ease and speed of adjustment that is characteristic of synergic models. The main disadvantage of this feature is that it has a significant impact on the cost.

Digital display. The presence of its own display in the design of the welding machine. This is, usually, the simplest segment screen, designed to display 2 – 3 digits and some special characters. However, even such screens are more informative than light and other similar signals: they can display a wide variety of data (input and operating voltage, time until shutdown "to rest", error codes, etc.). And the advantages over dial indicators are in small size and versatility — the display can display different types of information. As a result, this function can greatly simplify the work with the welding machine.

Connector for the remote control. Connector for connecting a remote control to the device. Depending on the model, we can talk about both traditional hand controls and foot pedals. Anyway, such an accessory provides additional convenience in some situations — in particular, it allows you to turn the power on and off, and even change individual operation parameters, without approaching the device every time. However most often welding machines are supplied without a remote control — however, this gives certain advantages: you can choose such an accessory at your discretion (the main thing is to make sure it is compatible).

Liquid cooling. Presence of a liquid cooling system in the configuration of the welding machine. Such cooling is more efficient than air cooling, it intensively removes heat from the hardware of the apparatus, the burner and allows you to achieve a very high duty cycle (see above) — up to 100%, and at currents of 200 A or more. Its disadvantages are complexity, high cost, bulkiness and significant weight. In light of the latter, liquid cooling units are often made separately from the welding machines themselves and can be connected / disconnected depending on what is more important at the moment — efficient cooling or portability. Also note that for many models, the manufacturer recommends using specialized coolants, and they are most often not included in the delivery set.

Built-in compressor. Compressor for air supply built directly into the machine. This feature is found only in models operating in PLASMA mode. Recall that this mode involves cutting metal using a powerful jet of highly heated and ionized air; To create the desired pressure, a compressor is needed. It can also be external; however, the built-in compressor allows you not only to always have all the necessary equipment with you, but also to reduce the overall dimensions of this equipment. In addition, with such equipment, you do not need to worry about the compatibility of the device and the air supply system. The disadvantages of models with built-in compressors include the increased cost, as well as the dimensions and weight of the entire body.

Starting the car engine. The ability to use the device to start the car engine, namely to power the starter. In other words, models with this function are also able to work in the launcher mode. Such an opportunity will be useful if the regular car battery is dead, out of order or missing, but there is a power source (mains or generator) nearby from which you can power the welding machine. Note that most often in this case it means the launch of cars with 12-volt on-board networks — cars, light trucks and buses; however, technically, nothing prevents to provide compatibility with heavy equipment (trucks, buses) operating on 24 volts. These details should be specified separately.

Transport wheels. The presence in the design of the welding machine of special wheels that facilitate transportation. The weight of some modern models can reach several tens of kilograms, and it is difficult even for several people to carry such a device manually. The presence of wheels makes it possible to manage by the forces of one person, even with a significant weight of the unit.

Coil Location

The location of the wire feed spool.

The wire is used in semi-automatic welding (see "Type of welding"); the coil on which it is wound can be located both outside the device and inside. There is no fundamental difference in the design of the feed mechanism, in efficiency and in other operating parameters between the "external" and "internal" models, they differ mainly in the features of storage and transportation. For example, the built-in coil increases the size and weight of the entire device, but it does not need to be carried separately.

Sleeve (MIG/MAG)

The type of MIG/MAG welding hose provided in the design of the welding machine.

Recall that MIG / MAG is welding in a special gas environment (inert or active); see "Welding type" for more details. And the welding sleeve can be described as a special hose connecting the torch to the machine (more precisely, the torch is usually part of the sleeve). Through such a hose, both the wire and the shielding gas are supplied to the welding site.

The sleeve for welding in modern MIG / MAG devices is most often made removable and fastened to a standard socket, known as a europlug. The advantages of this design are obvious: for storage, transportation or just long breaks in work, the hose can be removed and compactly rolled up so that it does not take up extra space or get in the way. In addition, if necessary — for example, in case of damage or in case of unsuitable length — the standard sleeve can be freely replaced with another one.

The non-removable design is much less common, as it is less convenient. Nevertheless, this option also has its advantages: fastening the sleeve to the device is as reliable as possible and at the same time inexpensive.

Protection class (IP)

The protection class to which the housing of the welding machine corresponds.

This parameter is traditionally denoted by the IP standard with two digits. It characterizes how well the case protects the hardware from foreign objects and dust (first digit), as well as from moisture (second digit). It is worth noting that in welding machines the degree of such protection is usually small — this is due to the fact that the case must be made ventilated. Here are the levels of protection against solid objects / dust that are relevant for modern models:

1 — protection against objects larger than 50 mm (comparable to the size of a human fist or elbow);
2 — from objects larger than 12.5 mm (we can talk about protection from fingers);
3 — from objects larger than 2.5 mm (the probability of accidental hit by most standard tools is excluded);

As for protection against moisture, it can be generally zero — that is, such a device can only be used in dry conditions. However, there are more advanced options:

1 — protection against drops of water falling vertically, with a strictly horizontal position of the device (the minimum degree of protection, in fact — from accidental ingress of a small amount of moisture);
2 — from vertical drops of water when the device deviates from the horizontal up to 15 ° (slightly higher than the minimum);
3 — from splashes falling at an angle of up to 60 ° to the vertical (we can talk about protect...ion from rain);
4 — from splashes falling from any direction (possibility of use in rain with strong winds);

Sometimes, instead of one of the numbers, the letter X is put — for example, IP2X. This means that the protection class for the corresponding type of exposure is not defined. In such a case, it is best to assume that there is no protection at all — this will provide maximum security and avoid unpleasant surprises.

Insulation class

The insulation class determines the degree of resistance of the insulating materials used in a particular device to heat. To date, welding machines use materials mainly of the following classes:

B — have a resistance limit of 130 °C;
F — 155 °C;
H — 180 °C.

Note that the vast majority of modern welding machines have electronic overheating protection, which turns off the device long before reaching the insulation resistance limit. Therefore, this parameter will be relevant only in an emergency, when the built-in protection fails. Nevertheless, it fully allows you to assess the safety of using the device — the higher the insulation class, the more likely it is to notice dangerous overheating in time (for example, by a characteristic smell) and turn off the device before damage occurs.

Electrode holder cable

The length of the electrode holder cable supplied with the device.

As the name implies, this cable is used to connect the clamp for the welding electrode to the machine. The longer such a wire is, the more freedom the welder has in moving, the farther he can go without moving the machine itself. On the other hand, excessively long cables create problems in storage and transportation, and often during operation (you need to look for a place where to place the excess wire). Therefore, when choosing, you should proceed from what is more important for you: the ability to move away from the device or the overall compactness. As for specific numbers, most often the length of this wire varies from 2 to 3 m, but in some models it can reach 5 m.

Mass cable

The length of the ground cable supplied with the machine.

The mass cable is a wire that is connected to the workpiece with a clamp. In other words, this is the second contact required to close the circuit during electric welding; connecting such a wire actually turns the workpiece into one solid fixed electrode (paired with a movable welding electrode). As for the length of such a wire, the longer it is, the farther from the connection point you can place the machine and the more freedom of movement the welder gets. On the other hand, excessively long wires create problems in storage and transportation, and often during work (you need to look for a place where to place the excess cable). In addition, freedom of movement can be ensured by increasing the length of the second wire — for the electrode holder or burner. Thus, the mass cable in modern welding machines usually has a length of 1.2 to 3 m (with some exceptions — both smaller and larger). This length allows you to comfortably place the device and at the same time does not create problems.

Torch cable

The length of the torch cable supplied with the machine.

The term "torch" is relevant for TIG welding (in argon, non-consumable electrode) — this is what the working nozzle for such welding is called. And the longer the wire with which the burner is connected to the device, the more freedom the welder has in moving, the farther he can go without moving the device itself. On the other hand, excessively long cables create problems in storage and transportation, and often during operation (you need to look for a place where to place the excess wire). Therefore, when choosing, you should proceed from what is more important for you: the ability to move away from the device or the overall compactness. As for specific length options, they usually range from 2 to 5 metres.

Torch cable

The length of the torch cable supplied with the machine.

The cutter is called the working nozzle for the PLASMA mode (plasma cutting). And the longer the wire with which such a nozzle is connected to the device, the more freedom the welder has in moving, the farther he can go without moving the device itself. On the other hand, excessively long cables create problems in storage and transportation, and often during operation (you need to look for a place where to place the excess wire). Therefore, when choosing, you should proceed from what is more important for you: the ability to move away from the device or the overall compactness. As for specific figures, in most models they are from 3 to 5 metres, although there are exceptions (in both directions).

Power cables

Power cables are used to connect the machine to the mains or other power source. At the same time, some models are not equipped with such cables — this point is specified in this paragraph. Obviously, this configuration does not allow the device to be used "out of the box" — the power wires will have to be purchased separately. On the other hand, the user can choose the brand and length of cables at his discretion, without relying on the manufacturer's decision — including using those wires that are already "in the household" (for example, left over from an old broken device).

Case (bag) included

The presence of a case or bag for storage and transportation in the scope of delivery of the welding machine.

Cases are characteristic hard containers in the form of a suitcase; such containers provide excellent protection against moisture and dirt, as well as against impacts. Bags, in turn, are made soft; they are inferior to cases in terms of the quality of protection, but they are less bulky and can be folded quite compactly when not needed. Well, anyway, complete packaging usually turns out to be more convenient and practical than impromptu.
Machine type
Welding type
Input voltage
Welding current
Maximum welding current
Maximum electrode diameter
Maximum wire diameter
Duty cycle
More features
Weight (for compact)
Power consumption
Catalog welders 2022 - new products, best sales, buy welders.