USA
Catalog   /   Computing   /   Monitors

Comparison MSI Optix G27CQ4 E2 27 " black vs Samsung Odyssey G5 27 27 "

Add to comparison
MSI Optix G27CQ4 E2 27 "  black
Samsung Odyssey G5 27 27 "
MSI Optix G27CQ4 E2 27 " blackSamsung Odyssey G5 27 27 "
Compare prices 4Compare prices 3
TOP sellers
Product typegaminggaming
Size27 "27 "
Screen
Curved screen
Curvature radius15001000
Panel type*VA*VA
Surface treatmentmatteglossy (anti-glare)
Resolution2560x1440 (16:9)2560x1440 (16:9)
Pixel size0.23 mm0.23 mm
Response time (GtG)4 ms4 ms
Response time (MPRT)1 ms1 ms
Refresh rate170 Hz144 Hz
Refresh rate (vert.)48 – 170 Hz
Refresh rate (hor.)91 – 251 kHz
Vertical viewing angle178 °178 °
Horizontal viewing angle178 °178 °
Brightness250 cd/m²250 cd/m²
Static contrast3 000:12 500:1
Dynamic Contrast100 000 000:1
Colour depth8 bit8 bit
Colour space (sRGB)114 %
Colour space (DCI P3)91 %
HDR++
Connection
Video transmission
DisplayPort v 1.2
HDMI x2
v 2.0
DisplayPort v 1.2
HDMI x1
v 2.0
Connectors (optional)
mini-Jack output (3.5 mm)
mini-Jack output (3.5 mm)
Features
Features
Flicker-Free
AMD FreeSync Premium
Flicker-Free
AMD FreeSync Premium
Game Features
brighten darker areas /Night Vision/
 
General
Slim bezel
Wall mountVESA 100x100mmVESA 75x75mm
Power consumption36 W
Dimensions (WxHxD)612x458x225 mm617x477x273 mm
Weight4.5 kg
Color
Added to E-Catalogjune 2023november 2020

Curvature radius

The radius of curvature of the screen in a curved monitor (see above). This parameter is indicated in millimetres along the radius of the circle, the bend of which corresponds to the bend of the monitor: for example, the designation 1800R indicates a radius of 1.8 m.

The smaller the number in this designation, the more the screen is curved (ceteris paribus). At the same time, some manufacturers claim that 1000R is considered the perfect curvature value: supposedly, it is with such a screen curvature that the image on it is as close as possible to the natural field of view of a person, and the closer the monitor curvature is to 1000R, the better the viewing experience. In fact, however, much depends on personal preference; and when viewed from a long distance (exceeding the radius of curvature by one and a half times or more), all the advantages of a curved screen are lost.

Surface treatment

Modern monitors can use displays with both glossy and matte screen surfaces. A matte surface is in some cases more preferable due to the fact that on a glossy screen, when exposed to bright light, noticeable glare appears, sometimes interfering with viewing. On the other hand, glossy screens offer better picture quality, higher brightness, and richer colours.
Due to the development of technology, monitors with a special anti-glare coating have appeared on the market, which, while maintaining all the advantages of a glossy screen, creates significantly less visible glare in bright ambient light.

Refresh rate

The maximum frame rate supported by the monitor at the recommended (maximum) resolution.

The higher the frame rate, the smoother the movement on the screen will look, the less noticeable jerks and blurring will be on it. Of course, the actual image quality also depends on the video signal, but for normal viewing of video at a high frame rate, the monitor must also support it.

When choosing this option, keep in mind that at lower resolutions than the maximum, the supported frame rate may be higher. For example, a model with a 1920x1080 matrix and a claimed frame rate of 60 Hz at a reduced resolution can give 75 Hz; but the 75Hz frame rate is only listed in the specs if it is supported at the monitor's native (maximum) resolution.

Also note that a high frame rate is especially important for gaming models (see "Type"). In most of them, this figure is 120 Hz and higher; monitors with a frequency of 144 Hz are considered the best option in terms of price and quality, however, there are also higher values — 165 Hz and 240 Hz. And monitors at 100 Hz can be both inexpensive gaming models and advanced home ones.

You can evaluate all the frame rates at which this monitor is capable of operating by the ver...tical frequency claimed in the specifications (see below).

Refresh rate (vert.)

The vertical refresh rate supported by the monitor.

Initially, the term "sweep frequency" was used in the characteristics of CRT monitors that work with an analogue signal. By tradition, it continues to be used for LCD matrices, however, for such screens, the refresh rate is actually the frame rate. See above for more on frame rate; here we note that in this case it is not the maximum frequency that is indicated, but the frequency range supported by the monitor — from the minimum to the maximum. This allows you to evaluate compatibility with certain video cards and operating modes: the frame rate of the video signal must match the frame rate of the monitor (or at least be a multiple of it), otherwise twitches and other unpleasant phenomena are possible.

It is worth noting that the monitor usually does not support any refresh rate from the range given in the specifications, but only certain standard values — for example, 50 Hz, 60 Hz and 75 Hz for the 50 – 75 Hz model.

Refresh rate (hor.)

The horizontal refresh rate of the image on the monitor screen.

This parameter was relevant for CRT monitors, in which the image was formed by an electron beam that "ran through" each individual line on the screen and illuminated the pixels. The horizontal refresh rate described the number of lines drawn per second. However, modern LCD matrices do not use a scan, but a full-frame image. Therefore, today this parameter is rarely given in monitors, and it describes the maximum horizontal frequency in an analogue video signal (for example, via the VGA interface), with which the screen can work normally.

Static contrast

Static contrast provided by the monitor screen.

This value describes the difference between the brightest whites and darkest blacks that the screen is capable of producing. In this case, unlike dynamic contrast (see below), the difference is indicated on the condition that the brightness of the screen backlight remains unchanged. In other words, this is the contrast that is guaranteed to be achievable within one frame. Static contrast is inevitably lower than dynamic. However, it is she who describes the basic capabilities of the screen.

The minimum static contrast ratio for tolerable image quality is considered to be 250:1, but even the most modest modern monitors give out about 400:1 (and a value of 1000:1 is not the highest class), and in high-end models this figure can reach 2000:1 and even more. .

Dynamic Contrast

Dynamic contrast provided by the monitor screen.

Dynamic contrast refers to the difference between the brightest white at maximum backlight intensity and the deepest black at minimum backlight. In this way, this indicator differs from static contrast, which is indicated with a constant backlight level (see above). Dynamic contrast ratio can be expressed in very impressive numbers (in some models — more than 100,000,000: 1). However, in fact, these figures are poorly correlated with what the viewer sees: it is almost impossible to achieve such a difference within one frame. Therefore, dynamic contrast is most often more of an advertising than a practically significant indicator, it is often indicated precisely in order to impress an inexperienced buyer. At the same time, we note that there are "smart" backlight technologies that allow you to change its brightness in certain areas of the screen and achieve a higher contrast in one frame than the claimed static one; these technologies are found mostly in premium monitors.

Colour space (sRGB)

Monitor colour gamut Rec. 709 or sRGB.

Any colour gamut is indicated as a percentage, however, not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the monitor's capabilities, the better its colour reproduction.

Nowadays, sRGB is actually the standard color model adopted for computer technology; This is what is used in the development and production of most video cards. For television, the Rec. standard, similar in parameters, is used. 709. In terms of the range of colors, these models are identical, and the percentage of coverage for them is the same. In the most advanced monitors it can reach or even exceed 100%; These are the values that are considered necessary for high-end screens, incl. professional.

Colour space (DCI P3)

Colour gamut of the monitor according to the DCI P3 colour model.

Any colour gamut is indicated as a percentage, however, not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the monitor's capabilities, the better its colour reproduction.

DCI P3 is a professional colour model used primarily in digital cinemas. It is noticeably more extensive than the standard sRGB, which gives better and more accurate colours. Accordingly, the percentage values are smaller — for example, 115% of sRGB coverage corresponds to approximately 90% of DCI P3 coverage; in the most advanced modern monitors, coverage according to this standard is 98 – 100%. At the same time, DCI-P3 support is not cheap, and therefore it is found mainly in high-end monitors for professional and gaming purposes.
MSI Optix G27CQ4 E2 often compared
Samsung Odyssey G5 27 often compared