Controller
Model of the controller installed in the SSD.
The controller is a control circuit, which, in fact, ensures the exchange of information between the memory cells and the computer to which the drive is connected. The capabilities of a particular SSD module (in particular, read and write speed) largely depend on this particular scheme. Knowing the controller model, you can find detailed data on it and evaluate the capabilities of the drive. For simple everyday use, this information is usually not needed, but for professionals and enthusiasts (modders, overclockers) it can come in handy.
Nowadays, high-end controllers are produced mainly under such brands:
InnoGrit,
Maxio,
Phison,
Realtek,
Silicon Motion,
Samsung.
MTBF
The drive's time between failures is the time that it is able to continuously work without failures and malfunctions; in other words — the operating time, after which there is a high probability of failures, and even failure of the module.
Usually, the characteristics indicate some average time derived from the results of conditional testing. Therefore, the actual value of this parameter may differ from the claimed one in one direction or another; however, in fact, this moment is not particularly significant. The fact is that for modern SSDs, the MTBF is estimated at millions of hours, and 1 million hours corresponds to more than 110 years — while we are talking about pure operating time. So, from a practical point of view, the durability of a drive is often limited by more specific parameters — TBW and DPWD (see below); and the manufacturer's warranty generally does not exceed several years. However, data on the MTBF in hours can also be useful when choosing: other things being equal, more time means more reliability and durability of the SSD as a whole.
Write IOPS
The IOPS provided by the drive in write mode.
The term IOPS refers to the highest number of I / O operations that an SSD module can perform per second, in this case, when writing data. By this indicator, the speed of the drive is often evaluated; however, this is not always true. Firstly, the IOPS values of different manufacturers can be measured in different ways — by the maximum value, by average, by random write, by sequential write, etc. Secondly, the benefits of high IOPS become noticeable only with some specific operations — in in particular, the simultaneous copying of numerous files. In addition, in fact, the speed of the drive may be limited by the system to which it is connected. In light of all this, it is generally acceptable to compare different SSD modules by IOPS, but the real difference in performance is likely not to be as noticeable as the difference in numbers.
As for specific values, for the write mode with IOPS
up to 50K is considered relatively modest,
50 – 100K — medium,
more than 100K — high.
Read IOPS
The IOPS provided by the drive in read mode.
The term IOPS refers to the maximum number of I / O operations that an SSD module can perform per second, in this case, when reading data from it. By this indicator, the speed of the drive is often evaluated; however, this is not always true. Firstly, the IOPS values of different manufacturers can be measured in different ways — by the maximum value, by the average, etc. Secondly, the advantages of high IOPS become noticeable only with some specific operations — in particular, when copying numerous files at the same time. In addition, in fact, the speed of the drive may be limited by the system to which it is connected. In light of all this, it is generally acceptable to compare different SSD modules by IOPS, but the real difference in performance is likely not to be as noticeable as the difference in numbers.
For modern SSDs in read mode, an IOPS value of
less than 50K is considered a very limited indicator, in most models this parameter lies in the range of
50 – 100K, but there are also
higher numbers.
TBW
The abbreviation TBW stands for drive time between failures, expressed in terabytes. In other words, this is the total amount of information that is guaranteed to be written (rewritten) to this module. This metric measures the overall reliability and lifespan of a drive—the higher the TBW, the longer the device will last, all other things being equal.
Note that knowing the TBW and the warranty period, you can calculate the number of rewrites per day (DWPD, see the relevant paragraph), if the manufacturer did not specify these data. To do this, use the formula: DWPD = TBW / (V * T * 365), where V is the drive capacity in terabytes, T is the warranty period (years). As for specific numbers, there are a lot of drives on the market with a relatively low TBW —
up to 100 TB ; even these values are often sufficient for everyday use for a considerable amount of time. However, models with TBW at the level
of 100 – 500 TB are more common. Values of
500 – 1000 TB can be classified as "above average", and in the most reliable solutions this figure
is even higher.
TRIM
Module support for the
TRIM command.
A feature of the operation of SSD modules is that when deleting data in the normal mode (without using TRIM), changes are made only to the “table of contents” of the drive: certain cells are marked as empty and ready for new information to be written. However, the old information is not deleted from them, and when writing new data, you actually have to overwrite it — this significantly slows down the speed of work. The TRIM command is designed to correct the situation: when it arrives, the drive controller checks if the cells marked as empty are empty and cleans them if necessary.
Of course, this function must be supported not only by the drive, but also by the system, however, the ability to work with TRIM is built into most popular modern operating systems.
Data encryption
Data encryption ensures the protection of storing information on a disk: only someone who knows the password can access encrypted information. The encryption module is an integral part of the drive and does not depend on the computer to which it is connected. The ability to encrypt data is critical if you plan to write confidential information to discs; this feature is especially useful for portable drives and laptop drives, which are more at risk of theft than fixed systems and their components.
M.2 cooling
The presence of a cooling radiator in the design of the M.2 form factor drive.
The heatsink is usually a metal plate attached to the drive board. It improves heat dissipation, which is especially important under high loads associated with handling large amounts of information. M.2 drives with
a heatsink are intended mainly for high-performance systems, in particular gaming ones.
There is also a special type of thin and light graphene radiators. They are glued to the surface of the M.2 SSD, covering the key areas (controller and memory chips) that generate the most heat. This allows heat to be distributed more evenly and its accumulation to be minimized.
We also note that M.2 radiators are found as equipment on motherboards. So if the drive itself does not have this function, you can choose
a “motherboard” with a radiator for it.