Memory type
The type of the main memory of the drive determines the features of the distribution of information over hardware cells and the physical features of the cells themselves.
—
MLC. Multi Level Cell memory based on multi-level cells, each of which contains several signal levels. MLC memory cells store 2 bits of information. Has optimum indicators of reliability, power consumption and productivity. Until recently, the technology was popular in entry-level and mid-range SSD modules, now it is gradually being replaced by more advanced options in the manner of TLC or 3D MLC.
—
TLC. The evolution of MLC technology. One Flash Memory Triple Level Cell can store 3 bits of information. Such a recording density somewhat increases the likelihood of errors compared to MLC, in addition, TLC memory is considered less durable. A positive feature of the nature of this technology is its affordable cost, and various design tricks can be used to improve reliability in SSDs with TLC memory.
—
3D NAND. In a 3D NAND structure, several layers of memory cells are arranged vertically, and interconnections are organized between them. This provides greater storage capacity without increasing the physical size of the drive and improves memory performance due to shorter connections for each memory cell. In SSD drives, 3D NAND memory can use MLC, TLC or QLC chips - more details
...about them are described in the corresponding help paragraphs.
— 3D MLC NAND. MLC-memory has a multilayer structure — its cells are placed on the board not in one level, but in several "floors". As a result, manufacturers have achieved an increase in storage capacity without a noticeable increase in size. Also, 3D MLC NAND memory is characterized by higher reliability than the original MLC (see the relevant paragraph), at a lower manufacturing cost.
— 3D TLC NAND. "Three-dimensional" modification of the TLC technology (see the relevant paragraph) with the placement of memory cells on the board in several layers. This arrangement allows you to achieve higher capacity with smaller sizes of the drives themselves. In production, such memory is simpler and cheaper than a single-layer one.
— 3D QLC NAND. Quad Level Cell flash type with 4 bits of data in each cell. The technology is designed to make SSDs with large volumes widely available and finally retire traditional HDDs. In the 3D QLC NAND configuration, the memory is built according to a “multi-level” scheme with the placement of cells on the board in several layers. "Three-dimensional" structure reduces the cost of production of memory modules and allows you to increase the volume of drives without compromising their weight and size component.
— 3D XPoint. A fundamentally new type of memory, radically different from traditional NAND. In such drives, memory cells and selectors are located at the intersections of perpendicular rows of conductive tracks. The mechanism for recording information in cells is based on changing the resistance of the material without the use of transistors. 3D XPoint memory is simple and inexpensive to produce, and offers much better speed and durability. The prefix "3D" in the name of the technology says that the cells on the crystal are placed in several layers. The first generation of 3D XPoint received a two-layer structure and was made using a 20-nanometer process technology.NVMe
NVMe drive support.
NVMe is a communication protocol designed specifically for SSD modules and used when connected via the PCI-E bus. This protocol was developed to eliminate the shortcomings of earlier connection standards (like SCSI or SATA) — primarily low speed, which did not allow realizing the full capabilities of solid-state memory. NVMe takes into account the key advantages of SSD — independent access, multithreading and low latency. Support for this protocol is built into all major modern operating systems; it works not only through the original PCIe interface, but also through M.2 (see Form Factor). And the U.2 connector was generally created specifically for NVMe SSDs (although the presence of this connector in itself does not mean compatibility with this protocol).
Manufacturer's warranty
Manufacturer's warranty provided for this model.
In fact, this is the minimum service life promised by the manufacturer, subject to the rules of operation. Most often, the actual service life of the device is much longer than the guaranteed one. However, keep in mind that the warranty often includes additional terms, such as “[so many years] or until the TBW is exhausted” (for more on TBW, see above).
Specific warranty periods may vary even for similar drives from the same manufacturer. The most popular options are
3 years and
5 years, however, there are other figures — up to
10 years in the most expensive and high-end models.
Ingress Protection (IP)
The level of protection allows you to understand how much the device is protected from dust and moisture. This is achieved due to the tightness of the case, additional rubber gaskets and is naturally displayed in numbers — for example IP67 (this level of protection indicates the
waterproofness of the SSD). The first number indicates protection against dust, the second one tells about water protection. Now more about the possible numbers.
Dust protection:
5 — dust resistance (dust can get inside in small quantities that do not affect the operation of the device);
6 — dust protection (dust does not penetrate inside).
Water protection:
5 — protection against water jets from any direction (showers, storms).
7 — the possibility of short-term immersion under water to a shallow depth (up to 1 m).
8 — the possibility of a long (30 minutes or more) dive to a depth of more than 1 m. But specific restrictions on depth and time may be different.
Material
The material from which the drive housing is made. This parameter is relevant mainly for external models (see "Type"), because the internal ones are protected by the computer case and under normal conditions do not come into contact with the environment.
— Plastic. Inexpensive and at the same time quite practical material. Plastic is inferior to metal in terms of strength, but it is quite reliable (up to the possibility of being used in shock-resistant models), and besides, it is not afraid of moisture. In addition, this material easily takes on a wide variety of shapes and colours, which "makes life easier" for designers and allows you to create original looking devices. Because of this, most cases for SSD drives are made of plastic.
— Metal. From a practical point of view, metal, on the one hand, is stronger than plastic, on the other hand, it is more difficult to process and more expensive; however, high strength is rarely required in fact. Therefore, the metal case is typical mainly for fairly advanced solutions.