USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Smartwatches & Trackers

Comparison Smartix R13 vs ColMi V11

Add to comparison
Smartix R13
ColMi V11
Smartix R13ColMi V11
Outdated ProductOutdated Product
TOP sellers
Main
Built-in LED indicator for notifications. Measurement of pulse, blood pressure and oxygen levels in the blood.
Typesmartwatchsmartwatch
InterfaceBluetooth v 4.0Bluetooth v 4.0
Telephony
Calls and alerts
notifications
vibration
notifications
vibration
Sports and tourism
Possible measurements
heart rate monitor
pressure (tonometer)
blood oxygen level
number of steps
distance traveled
calories burned
activity time
heart rate monitor
pressure (tonometer)
blood oxygen level
number of steps
distance traveled
calories burned
activity time
Display
Touch screen
Typecolourcolour
Display typeTFTIPS
Size0.95 "1.3 "
Screen resolution240x240 px
PPI261 ppi
Watch face protectionglassglass
Hardware
Extra features
accelerometer
accelerometer
Power source
Device chargingproprietary connectorproprietary connector
Source of powerLi-IonLi-Ion
Battery capacity110 mAh170 mAh
Operating time (normal mode)7 days
Operating time (active mode)
144 h /6 дн./
96 h
Case and strap
Materialmetalsteel
Bezel+
Strap Options
rubber/silicone
milanese bracelet
 
rubber/silicone
milanese bracelet
fabric
Clasp optionsclassic buckle, magneticclassic buckle, folding lock
Quick release strap
Band Width22 mm
General
Dustproof & waterproofIP67IP67
Dimensions (without strap)42х42х11 mm46.5x42x11 mm
Weight54 g55 g
Color
Added to E-Catalogmarch 2020june 2019

Display type

— TFT. The simplest type of liquid crystal panel used in colour displays. They provide a relatively low, but generally sufficient image quality, while they are much cheaper than more advanced options. This type does not require backlight — more precisely, the backlight is part of the screen itself and turns on with it. Of the unequivocal disadvantages, it is worth noting that many TFT panels have rather limited viewing angles; however, as technology improves, this drawback is gradually eliminated.

— IPS. A variety of LCD panels created in an attempt to eliminate the shortcomings of TFT. There are many subspecies of IPS panels, but they all feature high colour reproduction quality, excellent brightness and wide viewing angles. The disadvantage of this option is the relatively high cost.

OLED. In this case, we mean the technology used to create the simplest monochrome displays. In such screens, each segment that makes up the image is a separate LED, which eliminates the need for external illumination (and even the display itself can be used as a flashlight).

AMOLED. Screens based on a panel of active organic light emitting diodes. Similar to various types of TFT, this technology allows the creation of high-resolution colour displays. Its key feature is that the screen doe...s not require a separate backlight system — in AMOLED panels, each pixel glows independently, resulting in somewhat lower power consumption. At the same time, such screens are distinguished by good colour reproduction quality, excellent brightness and wide viewing angles, however, they are much more expensive than TFT.

Super AMOLED. An enhanced version of the AMOLED technology described above, delivering more expansive colour reproduction and brightness, as well as improved touch accuracy and speed, all at a thinner display and lower power consumption. In addition, the degree of reflection of external light is reduced, such a panel gives less glare and is better visible in sunlight.

— E-Ink (E-Paper). Displays made using "electronic paper" technology; in addition, this category also includes screens such as Memory LCD. The classic E-Ink screen is black and white, does not have a backlight (however, it can be built into particular gadgets), has a very low refresh rate and is poorly suited even for stopwatches, not to mention videos or animated pictures. On the other hand, "electronic paper" is perfectly visible in bright light and has a very low power consumption: it requires electricity only when the image is changed, while a still image remains visible even when the power is completely turned off. Memory LCD screens, in turn, with the same advantages, are almost as good as classic LCD panels in terms of refresh rate, but for a number of reasons they are not widely used.

Transflective. A specific type of LCD panels that can work both due to its own backlight and due to reflected light. In bright external light (for example, in the sun), such a screen effectively reflects it and does not require a separate backlight — however, it is still included in the design and turns on in low light. This type of operation can significantly reduce power consumption compared to traditional LCD screens, where the image is not visible without backlight; in addition, good visibility in bright light is also an important advantage. The main disadvantage of panels of this type is their high cost; in addition, they are made mostly monochrome.

- LTPO. OLED and AMOLED matrices with an adaptive refresh rate that varies over a wide range based on the tasks performed. When rendering dynamic frames, screens with LTPO technology automatically raise the refresh rate to the maximum values, while viewing static images, they automatically reduce it to the minimum. At the heart of the technology is a traditional LTPS substrate with a thin TFT oxide film on top of the TFT base. Dynamic control of the refresh rate is provided by controlling the electron flow. The key benefit of LTPO screens is their reduced power consumption.

Size

The size of the display installed in the gadget; for round screens, respectively, the diameter is indicated.

A larger screen, on the one hand, is more convenient to use, on the other hand, it significantly affects the dimensions of the entire device, which is especially critical for wearable gadgets. Therefore, manufacturers choose the display size in accordance with the purpose and functionality of each specific model — so that there is enough space on the screen and the device itself is not too bulky.

It is also worth mentioning that screens with a similar size may have different aspect ratios. For example, traditional smartwatches are usually equipped with square or round panels, while in fitness trackers, screens are often made elongated in height.

Screen resolution

Screen size in dots (pixels) horizontally and vertically. In general, this is one of the indicators that determine the image quality: the higher the resolution, the clearer and smoother the picture on the screen (with the same size), the less noticeable are the individual dots. On the other hand, an increase in the number of pixels affects the cost of displays, their power consumption and requirements for a hardware platform (more powerful hardware is required, which itself will cost more). In addition, the specifics of using smartwatches is such that there is simply no need to install high-resolution screens in them. Therefore, modern wrist accessories use displays with a relatively low resolution: for example, 320x320 with a size of about 1.6" is considered quite sufficient even for premium watches.

PPI

The density of dots on the screen of the gadget, namely, the number of pixels that are on each inch of the panel vertically or horizontally.

The higher the PPI, the higher the detail of the screen, the clearer and smoother the image is. On the other hand, this indicator affects the price accordingly. Therefore, the higher the density of points, the more advanced, usually, this gadget is in terms of general capabilities. However, when choosing a screen, manufacturers take into account the general purpose and functionality of the device; so that even a small number of PPIs usually does not interfere with comfortable use.

Battery capacity

The capacity of the battery that is installed in the gadget.

Theoretically, the higher the capacity, the longer the battery can work on a single charge. However, in fact, the battery life of the gadget also depends on its power consumption, and it is determined by the specs of the display and the hardware. Therefore, only models of the same type with very similar specs can be compared in terms of battery capacity; and for an accurate assessment of battery life, it is better to focus on the directly claimed operating time in one mode or another (see below).

It is also worth mentioning that high-capacity batteries inevitably turn out to be quite heavy and bulky. So the capacity of batteries installed in wearable gadgets is also greatly limited by size and weight.

Operating time (normal mode)

The time that the gadget can work on one battery charge (or the supplied battery) in normal use.

Normal mode, as a rule, means working with a relatively low load. At this time, the display can display some data, and basic functions can also work (counting steps, periodically checking heart rate, etc.), but in any case, power consumption is low. Therefore, the operating time in normal mode can be quite impressive, up to several weeks, or even months. However, when choosing, it doesn’t hurt to also pay attention to the stated time in active mode (see below) — especially if a long operating time is critical, or you plan to use the gadget intensively. The actual autonomy of the device will most likely be somewhere in between these two values, depending on the actual load. If only the time in normal mode is indicated for the gadget, you should choose with a certain reserve.

Operating time (active mode)

The time that the gadget is able to work on one charge of the battery in the active mode of use.

For watch-phones (see “Type”), this usually means a talk mode, for other gadgets, an intensive work mode when numerous features and sensors are used and there is a constant exchange of data with a smartphone/tablet. However, the specific understanding of the "active mode" for different manufacturers may vary: some indicate the time at maximum performance (that is, in fact, guaranteed battery life), others — in some kind of "average mode". However, anyway, this is a fairly clear parameter that describes the battery life of a particular model quite well (and is much closer to real indicators than the time in normal mode mentioned above).

Note that for models with a GPS sensor (see "Navigation"), the specifications may additionally specify the time of active operation using such a sensor. See "Operating time (GPS)" for details.

Material

The material from which the body of the gadget is made. Some models are available in several versions, made of different materials — for example, aluminium or steel; for such cases, all available options are indicated in the specs at once.

Plastic. Plastic is often considered a low-cost option, but this is not true in the case of wearable gadgets: such devices can use different types of plastic, including very advanced, durable and reliable ones. So the overall quality of such a case, usually, directly depends on the price category of the device. The common advantages of all types of plastic are relatively low weight, resistance to moisture, the ability to give the body any colour and shape, as well as low thermal conductivity.

Metal. Cases made of metal, for which the manufacturer, for some reason, did not specify the specific composition. However, most often in such cases we are talking about aluminium or steel, see below for more details on both. But high-end materials such as gold or titanium are rarely hidden under the modest term "metal" — they are usually indicated directly in the specifications. Anyway, in general, metal cases are somewhat stronger and more reliable than plastic ones, they also look more solid, but they are also more expens...ive.

— Steel. Usually, stainless steel is used for wearable gadgets. It is highly durable and reliable, does not corrode, looks stylish and neat, and is relatively inexpensive — cheaper than many aluminium alloys, not to mention titanium. One of the peculiarities of steel cases is rather heavy weight, but it can be both a disadvantage and an advantage: a massive case creates an additional feeling of reliability and solidity. It should be noted that most gadgets with steel cases have round dials and a traditional design, which is well suited even to a business style, but occasionally there are exceptions.

— Aluminium. Aluminium alloys combine high strength and low weight — much less than steel. But this material is somewhat more expensive. It is also considered well suited for bright youth gadgets, although it is occasionally used in more traditional devices.

— Rubber. A material found in some models of children's beacons and fitness trackers (see "Type"), but almost never used in other types of wearable gadgets. One of the key advantages of rubber is softness, which gives a certain degree of impact protection and makes the case as safe as possible; both are especially important for children's devices. In addition, such a case can be easily made waterproof and even completely sealed, as well as made in any colour. On the other hand, plastic has practically the same advantages (except for softness), and rubber costs a little more (although it is noticeably cheaper than metals).

— Titanium. Titanium alloys are premium materials and are rarely used, mainly in top-tier models of “extreme” gadgets. This material is light and at the same time extremely durable, besides it perfectly holds its shape when struck; however, titanium costs much more than the same aluminium, despite the fact that high reliability is not so often decisive.

— Gold. Gold or gold-plated case turns the gadget into a stylish fashion accessory. Such a case is very expensive, but this cannot be called a disadvantage: the price of the device emphasizes the status of the owner.

— Ceramics. Special high-strength ceramics is another premium material that not only performs a practical function, but also demonstrates the high level of the gadget and the solidity of its owner. On the practical side, in addition to strength and reliability, this material has extremely high scratch resistance, which allows it to retain its looks for a very long time even in not very favorable conditions. At the same time, ceramics do not tolerate strong point impacts.

Bezel

Swivel ring around the round dial of the smartwatch. Bezel exists for a decorative and protective purpose, and in many models it has additional markings and provides a number of special control options. By rotating it, you can navigate through the menu of the smartwatch, and it also simplifies interaction with the touch screen of the wearable device. On the bezel, special marks are often applied for the operation of the watch dial in the timer or stopwatch mode. The specific implementation of the features assigned to the ring depends on the specific model of smartwatch.

— Metallic. The metal bezel has high mechanical strength. Usually it is made of stainless steel.

— Plastic. A low cost version of the bezel, which is found in smartwatch models with plastic cases.
ColMi V11 often compared