USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Power Banks

Comparison iWalk Scorpion Air 12000 vs iWalk Scorpion 12000X

Add to comparison
iWalk Scorpion Air 12000
iWalk Scorpion 12000X
iWalk Scorpion Air 12000iWalk Scorpion 12000X
Outdated ProductOutdated Product
TOP sellers
Main
Two built-in cables for charging external devices — USB-C (5V/2.4A, 9V/1.5A) and Lightning (5V/2A). Support for wireless charging.
Apple MFI certified. 4 built-in cables (Lightning, microUSB and USB-C for charging gadgets and two-way USB for charging the power bank itself). Support QC 3.0 and Huawei FCP. Ability to charge your MacBook with built-in USB-C cable.
Battery capacity12000 mAh12000 mAh
Real capacity7500 mAh
Battery typeLi-PolLi-Pol
Full charge time
4.5 h /in Power Delivery mode/
4 h /via built-in USB cable/
Charging gadgets (outputs)
USB type C11
Max. power (per 1 port)18 W18 W
Power bank charging
Power bank charging inputs
 
USB type C
Apple Lightning
microUSB
USB type C
 
Built-in power bank charging connector
Power bank charge current via USB
2.4 A /5V/2.4A, 9V/1.5A/
2.4 A /5V/2.4A, 9V/2A/
Features
Wireless charger5 W
MFI certification
Fast charge
 
Power Delivery
 
Quick Charge 3.0
 
Huawei Fast Charge Protocol
Built-in charging cableUSB C, LightningUSB C, microUSB, Lightning
General
Body materialplasticplastic
Dimensions157x75x18 mm160x76x15 mm
Weight258 g
Color
Added to E-Catalognovember 2019august 2019

Real capacity

The real capacity of the power bank.

Real capacity is the amount of energy that a power bank is able to transfer to rechargeable gadgets. This amount is inevitably lower than the nominal capacity (see above) — most often by about 1.6 times (due to the fact that part of the energy goes to additional features and transmission losses). However, it is by real capacity that it is easiest to evaluate the actual capabilities of an external battery: for example, if this figure is 6500 mAh, this model is guaranteed to be enough for two full charges of a smartphone with a 3000 mAh battery and smartwatches for 250 mAh.

The capacity in this case is indicated for 5 V — the standard USB charging voltage. At the same time, the features of milliamp-hours as a unit of capacity are such that the actual amount of energy in the battery depends not only on the number of mAh, but also on the operating voltage. In fact, this means that when using fast charging technologies (see below) that involve increased voltage, the actual value of the actual capacity will differ from the claimed one (it will be lower). There are formulas and methods for calculating this value, they can be found in special sources.

Full charge time

The time required to fully charge a battery discharged “to zero”. Features of the charging process in different models may be different, respectively, and the time required for this may differ markedly even with the same capacity.

Fast-charging batteries tend to be more expensive. Therefore, choosing this option makes sense if you do not have much time to replenish your energy supply — for example, for hiking. However, keep in mind that charging at full speed may require a charger that supports certain fast charging technologies (see below).

It must also be said that in most modern batteries, the charging speed is uneven — it is highest at the several first percent from zero, then gradually decreases. Therefore, the time required to replenish the energy supply by a certain percentage will not be strictly proportional to the total claimed charge time; moreover, this time will depend on how much the battery is already charged at the time the procedure starts. For example, charging from 0 to 50% will take less time than from 50 to 100%, although both there and there we are talking about half the capacity.

Power bank charging inputs

The type of input used to charge the power bank's own battery. Simply put, this paragraph indicates which connector on the cable you need to charge the power bank. At the same time, some models provide several inputs for charging at once, which simplifies the search for a cable. Also note that for models with a built-in power bank charging connector (see below), the type of this connector is specified separately.

Most often in modern power banks there are standard connectors microUSB, USB type C and/or Apple Lightning. A lot of accessories are produced for such connectors — cables, network and car chargers, adapters, etc.; so there is usually no difficulty in finding a source of energy. Less common are models with DC input, they are usually equipped with their own power supply (or at least a cable under such a connector). Here is a more detailed description of the different types of inputs:

— microUSB. A smaller version of the USB connector, still very popular in portable tech, despite the active spread of the more advanced USB type C. It has relatively modest capabilities — in particular, it does not allow the implementation of some advanced fast charging technologies. On the other hand, it is very easy to find a source of energy for such a connector: both modern and many of the frankly outdated cables and chargers are...suitable for it.

— USB type C. A miniature type of USB connector, positioned, among other things, as the successor to microUSB. The most noticeable improvement is the reversible design, which allows you not to worry about which side of the plug is inserted into the connector. However, in the case of power banks, this is not the only or even the main advantage: USB type C has more extensive capabilities, allows more powerful currents and use a wider range of fast charging technologies (and Power Delivery was originally created specifically for this connector). Note that in some models the same connector of this type can be used both as an input for charging the battery and as an output for charging external devices — moreover, with automatic switching between these modes.

— Apple Lightning. Initially, this connector is designed for portable gadgets made by Apple. However, in the case of power banks, it can also be found in third-party devices: the idea is that the presence of Lightning allows you to charge an external battery using a cable from an iPhone or iPad and eliminates the need to look for a separate wire. For a number of reasons, this charging input is rarely used as the only one, more often it is provided in addition to microUSB or USB type C (see above).

— DC input. DC is a standard covering several types of connectors at once. Their common feature is a signature round shape, but the diameter, rated voltage and power can be different. In this sense, such connectors are not as convenient as USB type C, Lightning and other generally accepted standards — with a DC socket, it is best to use a native power supply (usually it comes bundled right away), and finding a third-party power source can be a problem. On the other hand, inputs of this type have practically no power limitations, it is easier to achieve high power supply with them than with the connectors described above. Therefore, DC inputs are used mainly in high-capacity power banks, where charging through a "weaker" interface would take an unreasonably long time. However, such models can also be equipped with standard microUSB or USB type C connectors "just in case".

Wireless charger

The power supplied by the power bank in wireless charging mode.

In accordance with the name, with such charging, energy is transferred to the device being charged literally via the air. However the range of such a transmission is only a few centimeters, so the gadget usually has to be placed directly on the power bank. However, it's still much easier and more convenient than fussing with wires, and the connectors don't wear out.

As for the power, the higher it is, the faster the external device can be charged. Initially, wireless technologies did not differ in power, but nowadays, even for power banks, the minimum is actually 5 W — this is comparable to the power of a modest, but far from the weakest USB port. There are also models with 10 W — this is comparable to the highest power that can be achieved at the USB output in a standard format, without the use of special fast charging technologies.

Of course, in order to use all the possibilities of wireless charging, the charging gadget must also support the appropriate power.

MFI certification

That means a power bank has official MFi certification.

The abbreviation "MFi" literally stands for "Made for iPhone/iPad/iPod". This phrase quite accurately describes the essence of this feature: MFi certification means that the power bank was designed to be fully compatible with Apple gadgets and has successfully passed the official test on this matter. Remember that "apple" devices have fairly strict requirements for compatible accessories; non-compliance with these requirements can make the accessory unusable, or even completely disable the gadget itself. At the same time, Apple branded accessories are not cheap, so their counterparts are produced by many third-party manufacturers — and some of these manufacturers, in order to reduce the cost, ignore the specific requirements mentioned. Therefore, in order to minimize the risk of various troubles, for portable Apple equipment, it is best to choose either proprietary solutions or accessories with official MFi certification. However, the absence of this certification does not mean that there will be problems with the device — a high-quality power bank from a well-known brand will most likely be quite suitable for an “apple” gadget.

Note that in the case of power banks, the specifics of MFi should be clarified separately. So, in some models, built-in charging cables (see below) have such certification, in others — wireless platforms (see "Wireless charging") for smart...phones or smartwatches. But if the power bank uses a detachable cable and does not have MFi-compatible wireless charging, this feature is not indicated for it (even if the bundled cable is MFi certified).

Fast charge

Fast charging technologies supported by the power bank. This is primarily about charging external gadgets, but the same technology can also be used when replenishing the power bank itself.

The fast charging feature, hence the name, can significantly reduce the time spent on the procedure. This is achieved through increased current and/or voltage, as well as smart process control (at each stage, the current and voltage correspond to the optimal parameters).

Fast charging is especially important for devices with high-capacity batteries that take a long time to charge normally. However, to fully use this feature, the power source and the gadget being charged must support the same charging technology; at the same time, different technologies are not compatible with each other, although occasionally there are exceptions. The most popular fast charging formats these days are QuickCharge (versions 3.0, 4.0 and 4.0+), Power Delivery (Power Delivery 3.0 and Power Delivery 3.1), Pump Express, Samsung Adaptive Fast Charging, Huawei Fast Charge Protocol, Huawei SuperCharge Protocol..., OPPO VOOC, OnePlus Dash Charge ; Here are the specific features of these, as well as some other options:

— Quick Charge (1.0, 2.0, 3.0, 4.0, 5.0). Technology created by Qualcomm and used in gadgets with Qualcomm CPUs. The later the version, the more advanced the technology: for example, Quick Charge 2.0 has 3 fixed voltage options, and version 3.0 has a smooth adjustment in the range from 3.6 to 20 V. Most often, gadgets with a newer version of Quick Charge are also compatible with older devices for charging, but for full use, an exact match in versions is desirable.
Also note that certain versions of Quick Charge have become the basis for some other technologies. However, again, the mutual compatibility of chargers/power banks and gadgets supporting these technologies needs to be clarified separately.

— Pump Express. Own development of MediaTek, used in portable devices with CPUs of this brand. Also available in several versions, with improvements and additions as it develops.

— Power delivery. Native fast charging technology for the USB type C connector. Used by many brands, found mainly in chargers (including power banks) and gadgets using this type of connector. Presented in several versions.

— Samsung Adaptive Fast Charging. Samsung's proprietary fast charging technology. It has been used without any changes since 2015, in light of which it looks quite modest compared to newer standards. Nevertheless, it is able to provide good speed, especially in the first 50% of the charge.

— Huawei FastCharge Protocol. One of Huawei's proprietary technologies. Formally similar to Quick Charge 2.0, but used with both Qualcomm and other brands of mobile processors, so compatibility is not guaranteed. In general, it is considered obsolete, gradually being replaced by more advanced standards like the SuperCharge Protocol.

— Huawei SuperCharge Protocol. Another proprietary technology from Huawei introduced in 2016; for 2021 is available in several versions. In some devices, the power of such charging exceeds 60 V — not a record, but quite an indicator.

— Oppo VOOC. OPPO technology, used both in branded smartphones and in equipment from other brands. Available in several versions; The latest (for 2021) version of SuperVOOC is for 2-cell batteries and is sometimes listed as a separate technology called Oppo SuperVOOC Flash Charge.

— OnePlus Dash Charge. A relatively old proprietary standard from OnePlus. An interesting feature is that in some gadgets, the effectiveness of Dash Charge is practically independent of the use of the screen: when the display is on, the battery charges at almost the same rate as when it is off. Technically a licensed version of OPPO's VOOC, however, these technologies are not compatible. Since 2018, Dash Charge has been phased out by Warp Charge, but this newer technology is still rare in separately sold chargers and power banks.

— PowerIQ. Technology developed by the Anker brand. The key feature of PowerIQ is that it is not a standalone standard, but a combined format of operation that combines a wide range of popular fast charging formats. In particular, version 3.0 claims the ability to work with Quick Charge, Power Delivery, Apple Fast Charging, Samsung Adaptive Fast Charging and others.

Built-in charging cable

Type of built-in cable(or cables) for charging external devices, provided in the design of the power bank.

The main advantage of such equipment over a removable one (see "Bundled wires (adapters)") is that the built-in cable is always in place — you can lose it only together with the power bank itself (or as a result of an "accident" with physical damage to the structure) . On the other hand, such a cable cannot be quickly replaced with another one (longer, with a different plug, etc.); and if it is damaged, you will have to carry the power bank for repair or change it entirely. As for the type of built-in wires, this is indicated by the type of plugs for charging external gadgets that such wires are equipped with. Most often these are microUSB, USB type C and/or Lightning connectors, here is a more detailed description of them:

— microUSB. Relatively old, but still popular connector for portable equipment (mobile phones, tablets, players, etc.); used by almost all manufacturers of such equipment, except for Apple with their proprietary Lightning interface (see below).

— USB type C. A miniature connector, released relatively recently, but gaining more and more popularity (to the point that even Apple, which usually prefers proprietary interfaces, uses USB type C to charge its laptops). It is small (slightly l...arger than microUSB) and has conveniently reversible design, well optimized for various advanced features, including some fast charging technologies (although the presence of USB type C does not mean support for such charging).

— Lightning. Apple proprietary connector used in portable devices of this brand (iPhone, iPad, iPod); does not apply to other manufacturers. Note that for a power bank with such a cable, MFi certification is desirable (see above).

If there are several types of plugs, they can be provided both on individual wires and on one combined cable. But if a removable adapter is included in the kit, its type is indicated in the “Bundled wires (adapters)” paragraph.