USA
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Apple MacBook Air 13 2018 [MRE82] vs Apple MacBook Pro 15 2013 [ME293]

Add to comparison
Apple MacBook Air 13 (2018) (MRE82)
Apple MacBook Pro 15 (2013) (ME293)
Apple MacBook Air 13 2018 [MRE82]Apple MacBook Pro 15 2013 [ME293]
Compare prices 2
from $479.99 
Expecting restock
TOP sellers
Typeultrabooklaptop
Screen
Screen size13.3 "15.4 "
Screen typeIPSIPS
Surface treatmentglossgloss
Screen resolution
2560x1600 (16:10) /Retina Display/
2880x1800 (16:10) /IPS Retina Display/
Refresh rate60 Hz60 Hz
Light sensor
CPU
SeriesCore i5Core i7
Model8210Y4750HQ
Processor cores24
Total threads4 threads
CPU speed1.6 GHz
2 GHz /3.2 GHz using Turbo Boost technology/
TurboBoost / TurboCore frequency3.6 GHz
L2 cache512 KB1024 KB
L3 cache4 MB6 MB
3DMark063544 score(s)6436 score(s)
Passmark CPU Mark4057 score(s)7335 score(s)
SuperPI 1M11.5 sec
RAM
RAM8 GB8 GB
Max. RAM8 GB
RAM type
DDR3 /LPDDR3/
DDR3
RAM speed2133 MHz1600 MHz
Slotsbuilt-in
Graphics card
Graphics card typeintegratedintegrated
Graphics card seriesIntel HD GraphicsIntel Iris Graphics
Graphics card modelUHD Graphics 617Iris Pro Graphics 5200
3DMark068662 score(s)13123 score(s)
3DMark Vantage P8692 score(s)
Storage
Drive typeSSDSSD
Drive capacity
128 GB /PCI-E/
256 GB
Connections
Connection ports
 
HDMI /MagSafe 2/
Card reader
 /SDXC/
USB 3.2 gen12
USB C 3.2 gen22
Thunderbolt interfacev3 2 pcs
v1 2 pcs /2/
Alternate Mode
Wi-FiWi-Fi 5 (802.11ac)Wi-Fi 5 (802.11ac)
Multimedia
Webcam
1280x720 (HD) /FaceTime/
1280x720 (HD) /FaceTime HD camera 720p/
Camera shutter
Speakers22
Security
fingerprint scanner
 
 
kensington / Noble lock
Keyboard
Backlightwhiteis absent
Key designisland typeisland type
Num block
Input device
touchpad /Force Touch/
touchpad
Battery
Battery capacity8600 mAh
Battery capacity50 W*h95 W*h
Operating time12 h8 h
Powered by USB-C (Power Delivery)
Fast charge
General
Preinstalled OS
MacOS /Mojave/
MacOS /OS X Mavericks/
Materialaluminiumaluminium
Dimensions (WxDxT)304.1x212.4x15.6 mm358.9x247.1x18 mm
Weight1.25 kg2.02 kg
Color
Added to E-Catalognovember 2018october 2013

Type

General device type.

In addition to traditional laptops, nowadays you can find varieties such as netbooks, ultrabooks, 2 in 1 tablet laptops and transformers. Here are their main features:

— A laptop. Laptops of a more or less traditional format that do not belong to any of the specific categories described below. The classic, most popular screen size in these models is 15.6 ". 13.3" and 14" laptops are considered compact, laptops with a 17.3" screen are large-format, and larger displays are found in advanced gaming models. At the same time, devices from this category are also very diverse in terms of characteristics and capabilities: they range from “typewriters” designed for education and home tasks, to high-end gaming solutions, and workstations and multimedia complexes.

— Ultrabook. High-end laptops that combine compactness, light weight and advanced features. The diagonal in ultrabooks ranges from 11 "to 14", the thickness of the case does not exceed 21 mm, while the internal equipment usually includes powerful processors, a large amount of RAM, fast drives like SSD and other similar solutions. In addition, many devices from this category are made in a characteristic stylish design and are also designed for...the role of fashion accessories.

— Transformer 360°. Another type of laptop that can turn into a tablet. However, unlike the laptops-tablets described above, in this case, not a removable keyboard is used, but a special swivel connection of the upper and lower blocks. The design of this connection is such that the top of the device can be rotated 360° and placed face up on the keyboard. Thus, the transformer can be converted from a laptop to a tablet without removing the bottom half; this is the fundamental difference between such models and the “2-in-1” described above. This format of work is generally more convenient — no need to look for a place for the removed keyboard, there is no risk of forgetting or losing it; in addition, the mounting design usually allows you to use the device in the format of a “photo frame” — an inclined tablet on a stand without a keyboard. Thus, transformers have become more widespread today than collapsible laptops-tablets. Their disadvantages include the inability to reduce weight by removing the keyboard. The diagonal of such devices can be from 12" to 17".

— 2 in 1 (laptop-tablet). Laptops that can turn into tablets. In such models, the entire “hardware” (or at least its key components) is placed in the upper half, the screen is made touch-sensitive, and the lower half with the keyboard can be completely separated. From traditional tablets, which can also be equipped with keyboards, such devices differ in three main points. The first is more powerful hardware: in particular, most 2-in-1 models carry full-fledged laptop processors (up to and including Core i7), while tablets mainly use CPUs similar to smartphone chips. The second point is a larger screen size, usually 13 – 15". The third caveat is that the keyboard of a laptop-tablet can include not only a set of keys and a spare battery, but also some system components: a discrete graphics card, an additional drive, etc. .
In general, 2-in-1 models are more versatile than traditional laptops; however, nowadays they are much less common than another similar type of laptop — transformers (see below). This is due to the fact that the removable keyboard is not always convenient: when using a device in tablet format, it usually has to be removed; it is not always possible to find a place nearby for the removed keyboard; besides, it can be forgotten or lost through inattention. However, this design also has advantages: for example, if there is enough tablet on the road, there is no need to carry additional cargo in the form of the lower half of the device.

Screen size

Diagonal size of laptop display.

The larger the screen, the more convenient the laptop for watching high-definition movies, modern games, working with large-format graphic materials, etc. Large screens are especially important for multimedia and gaming models. On the other hand, the diagonal of the display directly affects the size and cost of the entire device. So if portability is key, it makes sense to pay attention to relatively small solutions; especially since most modern laptops have video outputs like HDMI or DisplayPort and allow connection of large-format external monitors.

In light of all this, the actual maximum for laptops these days is 17"(17.3"); however larger devices (18") reappeared at the beginning of 2023. The standard option for general purpose laptops is 15"(15.6"), less often 16", a diagonal of 13"(13.3") or 14" is considered small by the standards of such And smaller screens can be found mainly in specific compact varieties of laptops — ultrabooks, 2 in 1, transformers, netbooks; among such devices there are solutions for 12 ", 11" and even 10" or less.

Screen resolution

The resolution of the screen installed in the laptop — that is, the size of the screen in pixels horizontally and vertically.

Higher resolution, on the one hand, gives a sharper, more detailed image; on the other hand, it increases the cost of the laptop. The latter is connected not only with the cost of the displays themselves, but also with the fact that in order to work effectively at high resolutions, you need the appropriate filling (primarily a graphics card). This is especially true in games; so if you are looking for a laptop with a high-resolution screen that can effectively "run" modern games — you should pay attention not only to the characteristics of the display, but also to other data (the type and parameters of the graphics card, test results, the ability to work with certain games — see everything below). On the other hand, if the device is planned to be used for simple tasks such as working with documents, surfing the Internet and watching videos, you can not pay much attention to the “hardware” parameters: anyway, they are selected so that the laptop is guaranteed to be able to cope with such tasks on full resolution of the "native" screen.

As for specific numbers, the resolution options that are relevant today can be divided into 4 groups: HD (720), Full HD (1080), Quad HD and UltraHD 4K. Here is a mor...e detailed description of them:

— HD (720). This category includes all displays that have a vertical size of less than 1080 pixels. The most popular HD resolution in modern laptops is 1366x768; in devices larger than 15.6 ", 1600x900 is also often found. Other values quite exotic and are rarely used. In general, screens of this standard are now typical mainly for entry-level laptops.

— Full HD (1080). Initially, the Full HD standard provides a frame size of 1920x1080, and it is this resolution that is most often used in laptop screens from this category. However, in addition to this, other resolution options are also included in this format, where the vertical size is at least 1080 pixels, but does not reach 1440 pixels. Examples include 1920x1200 and 2560x1080. In general, Full HD displays provide a good balance between cost, image quality and laptop hardware requirements. Because of this, nowadays they are extremely widespread; matrices of this standard can be found even in low-cost devices, although they are mainly used in more advanced technology.

— Quad HD. A transitional option between the popular Full HD 1080 (see above) and the high-end and expensive UltraHD 4K. The vertical size of such screens starts from 1440 pixels and can reach 2000 pixels. Note that QuadHD resolutions are especially popular in Apple laptops; most often, such devices have 2560x1600 screens, although there are other options.

— Ultra HD 4K. The most advanced standard used in modern laptops. The vertical size of such screens is at least 2160 dots (up to 2400 in some configurations); the classic resolution of a modern UltraHD matrix is 3840x2160, but there are other values. Anyway, a 4K display allows for high image quality, however, it costs accordingly — including due to the corresponding requirements for a graphics adapter; in addition, to work with high resolutions, it can be more convenient to connect an external monitor to the laptop. Thus, such screens are used relatively rarely, and mainly among premium laptops.

Series

Each series combines chips that are similar in general level, purpose, and often also in individual specific features. Moreover, most series include processors of several generations at once, which can differ significantly in actual characteristics. It is worth noting that until recently laptops were equipped almost exclusively with processors from AMD or Intel - until in 2020 Apple introduced its own chip Apple M1 (with updated versions Apple M1 Pro and Apple M1 Max), Apple M2 (2022) with powerful chips M2 Pro, M2 Max and Apple M3, M3 Pro, M3 Max (2023). At the moment, the following series are mainly relevant in laptops:

AMD Ryzen 3. The most inexpensive series of AMD chips in the Ryzen family (Ryzen 3, Ryzen 5, Ryzen 7 and Ryzen 9) using the Zen microarchitecture. In terms of the general design, Ryzen 3 is similar to its older brothers, but half of the computing cores are deactivated. However, it is quite advanced and is found even in ultrabooks.
...> — Ryzen 5. The second series based on Zen architecture is a more affordable alternative to Ryzen 7 chips. Ryzen 5 chips have somewhat more limited performance characteristics (in particular, a lower clock frequency and, in some models, L3 cache size). Otherwise, they are completely similar to the “sevens” and are also positioned as high-performance chips for gaming and workstations. See "Ryzen 7" below for more details.

- Ryzen 7. The first series of processors from AMD, built on the Zen microarchitecture. It was introduced in March 2017. In general, Ryzen chips (of all series) are promoted as high-end solutions for gamers, developers, graphic designers and video editors. One of the main differences between Zen and previous microarchitectures was the use of simultaneous multithreading, due to which the number of operations per clock was significantly increased at the same clock frequency. In addition, each core received its own floating-point calculation unit, the speed of the first level cache increased, and the L3 cache capacity in Ryzen 7 chips is 16 MB as standard.

— Atom. Processors specifically designed by Intel for mobile devices (including smartphones). They are mainly used in ultra-compact laptops.

— Core M. Processors designed for portable equipment (in particular, ultra-compact laptops) and characterized by extremely low heat generation, allowing the use of passive cooling systems. They were introduced in 2014 as the first serial chips based on the 14 nm process technology.

Celeron. The most budget series in the modern line of desktop processors from Intel. However, the latest generations come with integrated graphics.

Pentium. Budget desktop processors from Intel, slightly superior in performance to Celeron, but not up to the Core i3. Also carry integrated graphics.

Processor. The entry-level processor line that precedes the Core i3 family in the modern Intel hierarchy. Such chipsets are found in entry-level laptops designed for everyday household or office use, as well as undemanding games.

- Core i3. A series of entry-level and mid-level processors, the most budget series in the Core ix family; however, it outperforms the Pentium and Celeron series.

— Core i5. A series of mid-range processors, both in general and in the Core ix family. The architecture is dual- or quad-core, they have a third-level cache, and many models are also equipped with a built-in graphics chip.

Core i7. A series of productive processors; before the advent of i9 was the most advanced in the "Core i" family. Core i7 chips have at least 4 cores, large level 3 cache and integrated graphics.

Core i9. Top-level processors released in 2017; the most powerful line of consumer-grade laptop processors at the time of its introduction, displacing Core i7 chips from this position. They have from 6 cores and a volume cache of level 3.

— Apple. A series of processors from Apple, which debuted in November 2020 along with the release of the next generations of MacBook, MacBook Air and MacBook Pro. In the initial configurations, they are equipped with 8 cores - 4 productive and 4 economical; the latter, according to the creators, consume 10 times less energy than the former. This, combined with the 5 nm process technology, has made it possible to achieve very high energy efficiency and at the same time performance. It is also worth noting that the processors of this series are made according to the system-on-chip scheme: a single module combines a CPU, a graphics adapter, RAM (in the first models - 8 or 16 GB), an NVMe solid-state drive and some other components (in particularly Thunderbolt 4 controllers).

Model

The specific model of the processor installed in the laptop, or rather, the processor index within its series (see above). Knowing the full name of the processor (series and model), you can find detailed information on it (up to practical reviews) and clarify its capabilities.

Processor cores

The number of cores in the laptop CPU.

The core is a part of the CPU designed to process one thread of instructions (and sometimes more, for such models, see "Number of threads"). Nowadays, in laptops you can find dual-core, quad-core, six-core, eight-core, ten-core, 12-core, 14-core CPUs. Also note that recently configurations with different types of cores as part of a single CPU are gaining popularity. Such chips are built on a hybrid architecture that combines high performance and energy-efficient cores. They operate at different clock speeds, have different amounts of pre-installed cache memory and are designed to solve different problems. In particular, such CPUs are found in Intel CPUs (from the 12th generation) and Apple.

Theoretically, more cores means higher performance, especially in parallel computing tasks or when processing multiple resource-intensive tasks at the same time. However, in practice this is true only all else being equal – that is, with a similar microarchitecture, clock frequency, cache volumes and other key parameters. Modern CPUs can vary greatly on these parameters – in itself, a greater number of cores does not mean superiority. This is especially true for dual- and quad-core chips: a mobil...e-level CPU (for example, Snapdragon, see "CPU series") with 4 cores may well be inferior in capabilities to a dual-core desktop series chip (like Core i3 or i5, which are often used in universal laptops with the "optimal" set of specifications for different tasks). When evaluating CPUs with two or four cores, it is necessary to look, first of all, at the general set of characteristics. But the presence of six, eight or more cores is almost certainly a sign of a powerful CPU. Such equipment is typical mainly for advanced gaming and professional laptops.

Total threads

The number of threads supported by the laptop processor.

A thread is a sequence of instructions executed by a processor. Initially, each processor core was designed for one such sequence, and the number of threads was equal to the number of cores. However, in modern CPUs, multithreading technologies are increasingly being used, which allow loading each core with two instruction sequences at once. Such technologies have different names for different manufacturers, but the principle of their operation is the same: during the inevitable pauses in the execution of one of the threads, the kernel does not idle, but works with a different sequence. Accordingly, the total number of threads in such processors is twice the number of cores; such a scheme of work significantly increases productivity (although, of course, it also affects the cost).

CPU speed

The clock speed of the processor installed in the laptop (for multi-core processors, the frequency of each individual core).

Theoretically, a higher clock speed has a positive effect on performance, as it allows the processor to perform more operations per unit of time. However, in fact, the capabilities of the CPU depend on a number of other characteristics — primarily on the series to which it belongs (see above). It even happens that of the two chips, the more performant in the overall result is the slower one. With this in mind, it makes sense to compare by clock frequency only processors of the same series, and ideally, also of the same generation; and the laptop as a whole should be judged by the complex characteristics of the system, as well as by the results of tests (see below).

TurboBoost / TurboCore frequency

Processor clock speed achieved in TurboBoost or TurboCore "overclocking" mode.

Turbo Boost and Turbo Core technologies are used by different manufacturers (Intel and AMD, respectively), but they have the same principle of operation: load distribution from more loaded processor cores to less loaded ones to improve performance. The "overclocking" mode is characterized by an increased clock frequency, and it is indicated in this case.

For more information about clock speed in general, see the relevant paragraph above.
Apple MacBook Air 13 (2018) often compared
Apple MacBook Pro 15 (2013) often compared