Dark mode
USA
Catalog   /   Camping & Fishing   /   Air Guns & Weapons   /   Sights

Comparison Hawke Vantage IR 4-12x50 Mil Dot vs Hawke Vantage IR 4-12x50 AO

Add to comparison
Hawke Vantage IR 4-12x50 Mil Dot
Hawke Vantage IR 4-12x50 AO
Hawke Vantage IR 4-12x50 Mil DotHawke Vantage IR 4-12x50 AO
Compare prices 3Compare prices 3
TOP sellers
Main
The Vantage IR 4-12x50 scope has two models with different reticle: 14250 (Mil Dot) and 14251 (rimfire .22).
The Vantage IR 4-12x50 AO scope has two models with different reticle: 14254 (L4A Dot) and 14252 (Mil Dot)
Typeopticoptic
Designenclosedenclosed
Optical characteristics
Magnification4 – 12 x4 – 12 x
Magnification adjustment
Lens diameter50 mm50 mm
Exit pupil diameter13 – 4 mm12.5 – 4.2 mm
Offset of the exit pupil89 mm89 mm
Field of view at 100 m8.7 – 2.9 m8.7 – 2.9 m
Twilight factor14.1414.1
Brightness156.3
Measuring units of the sightMOAMOA
Adjustment division value0.25 MOA0.25 MOA
Parallax adjustmentbody ring (AO)
Diopter adjustment
Zero setting
Lens coatingfull multilayer enlightenmentfull multilayer enlightenment
Aiming mark
Reticlein the 2nd focal plane (SFP)in the 2nd focal plane (SFP)
Reticle type
 
reticle with graduations
half cross
reticle with graduations
Reticle measuring unitsMRADMRAD
Aiming mark illumination
Backlight brightness adjustments
Selection of aiming mark colour
More features
More features
dust-, waterproof
shockproof
nitrogen filled
dust-, waterproof
shockproof
nitrogen filled
Elevation drumenclosedenclosed
Power source
Power source1xCR2032CR2032
General
Weapon compatibilitylarge-caliberlarge-caliber
Mounting ring diameter25.4 mm25.4 mm
Materialmetalmetal
Country of originUnited KingdomUnited Kingdom
Sight length341 mm349 mm
Weight497 g600 g
Added to E-Catalogaugust 2018august 2016

Exit pupil diameter

The diameter of the exit pupil created by the optical system of the sight.

The exit pupil is called the projection of the front lens of the lens, built by the optics in the region of the eyepiece; this image can be observed in the form of a characteristic light circle, if you look into the eyepiece not close, but from a distance of 30 – 40 cm. The diameter of this circle can be calculated by dividing the lens diameter by the multiplicity (see above). For example, an 8x40 model would have a pupil diameter of 40/8=5mm. This indicator determines the overall aperture of the device and, accordingly, the image quality in low light: the larger the pupil diameter, the brighter the “picture” will be (of course, with the same lens quality, because it also affects the brightness).

In addition, it is believed that the diameter of the exit pupil should be no less than that of the pupil of the human eye — and the size of the latter can vary. So, in daylight, the pupil in the eye has a size of 2-3 mm, and in the dark — 7-8 mm in adolescents and adults, and about 5 mm in the elderly. This point should be taken into account when choosing a model for specific conditions: after all, high-aperture optics are expensive, and it hardly makes sense to overpay for a large pupil if you need a scope exclusively for daytime use.

Twilight factor

A complex indicator that describes the quality of any optical system (including sights) at dusk — when the lighting is weaker than during the day, but not yet as dim as in the deep evening or at night. It is primarily about the ability to see small details through the device.

The need to use this parameter is due to the fact that twilight is a special condition. In daylight, the visibility of small details is determined primarily by the magnification of the optics, and in night light, by the diameter of the lens (see above); at dusk, both of these indicators affect the quality. This feature takes into account the twilight factor. Its specific value is calculated as the square root of the product of the multiplicity and the diameter of the lens. For example, for an 8x40 scope, the twilight factor would be the root of 8x40=320, which is approximately 17.8. Models with adjustable magnification (see above) usually indicate the minimum twilight factor corresponding to the minimum magnification.

The lowest value of this parameter for normal visibility at dusk is considered to be 17. At the same time, it is worth noting that the twilight factor does not take into account the actual light transmission of the system — and it strongly depends on the quality of the lenses, the use of antireflection coatings (see below), etc. Therefore, the actual image quality at dusk for two models with the same twilight factor may differ markedly.

Brightness

One of the parameters describing the quality of visibility through an optical device in low light conditions. Relative brightness is denoted as the diameter of the exit pupil (see above), squared; the higher this number, the more light the sight lets through. At the same time, this indicator does not take into account the quality of the lenses and their coatings used in the design. Therefore, comparing two sights in terms of relative brightness is only possible approximately, because even if the values are equal, the actual image quality may differ markedly. Also note that it makes sense to pay attention to this parameter only if the sight is planned to be used at dusk.

As for specific values, in the "dimest" models, the relative brightness does not exceed 100, in the most "bright" it can be 300 or more. Detailed recommendations regarding the choice of this parameter for certain conditions can be found in special sources. Here it is worth mentioning that the relative brightness is not directly related to the price category of the sight: models similar in this indicator can vary significantly in price.

Parallax adjustment

The possibility of manual adjustment of the sight from parallax, by the user himself. For this purpose, the design provides a corresponding regulator.

Parallax in this case is a phenomenon when, when the eye deviates from the optical axis of the sight (from the center of the eyepiece), the aiming mark visible to the shooter also shifts, while the sight itself remains motionless. As a result, if the eye is not exactly in the center, the visible position of the mark does not coincide with the actual aiming point. This phenomenon is especially pronounced in optical sights (see "Type"), and many collimators are also subject to it, although not to the same extent (but "night vision" and thermal imagers are free of this drawback, since the mark is displayed on the built-in display).

To eliminate this phenomenon, a specific adjustment is used - parallax adjustment. It is usually done right at the factory. However, the sight can be adjusted from parallax only for a certain distance, and with significant deviations from this distance (more than 30% downwards or 60% upwards), this effect begins to manifest itself again. It can be compensated for by an ideal insert ("eye strictly in the center"), but even for experienced shooters this can be difficult, especially when shooting standing, offhand and in other uncomfortable positions. In light of this, some models also provide manual parallax adjustment - a regulator that allows you...to set the adjustment distance at the user's discretion. In addition to the situations described above, this function will be especially useful for novice users, as well as for high-precision shooting at long distances.

Optical sights with parallax adjustment> can be equipped with a wide ring on the AO (Adjustable Objective) lens or a drum on the SF (Side Focusing) control unit, on which additional accessories for fine-tuning the focus in the form of wheels are installed.

Diopter adjustment

The presence of a diopter correction function in the sight. This feature will be very useful if you wear glasses due to nearsightedness or farsightedness. By setting the required number of "plus" or "minus" diopters on the adjustment scale, you can look into the eyepiece with the naked eye and see a clear picture — the optics of the device will provide the necessary correction. This is much more convenient than watching through glasses (especially considering that due to the recoil of the weapon, it is impossible to keep the scope close to anything, whether it be the eye socket of the shooter or the glass of the glasses). However one should not forget that the correction range is usually small, and in case of serious vision failures, the capabilities of the optics may not be enough; but such situations are still quite rare.

Reticle type

The type of aiming mark (reticle) provided in the device. There are models for which several options are indicated at once: this implies the possibility of switching between them.

As for specific varieties, in collimators, all brands have a common specificity - they should provide the convenience of quick aiming at relatively short distances. But the reticles of optical and other similar sights can be divided into hunting and tactical (sniper) sights. The former are relatively simple and have a minimum of additional elements, as they are designed for short distances and relatively large targets; and the latter are designed for high-precision shooting, military and police use, and therefore must be supplemented with various elements for measuring angles and taking corrections on the go, including between shots.

Among the specific types of grids most popular in our time are the cross with divisions, BDC, duplex, cross, half-cross, cross with a dot, cross with a circle, herringbone, rangefinder, dot, circle with a dot and circle with 2 points. Here are th...e main features of each:

— Cross with divisions. One of the most popular types of "tactical" reticles used in optical sights. The key element is the crosshair, on the lines of which additional dots are applied. The distance between the points corresponds to a strictly defined angular size; initially it was 1 MRAD (1 "mil", hence the name), however, in modern sights, other values \u200b\u200bcan be found, they should be specified according to the instructions. In addition, such grids can differ in the number of points, the presence of thickening on the lines (as in the duplexes described below), etc. Be that as it may, such a grid is very convenient for estimating distances and making corrections on the fly, many professional shooters consider it almost ideal for high-precision shooting, including at long distances, besides, the original cross with divisions (Mil-Dot) is widely used by military and police snipers around the world.
We also note that there is also a collimator variety of "mildots" - in this case, the grid looks like a circle with a dot in the middle and several dots below it, with an interval of the same 1 MRAD. However, when using collimators, the real need for making vertical corrections rarely arises, and this option is not widely used.

- Duplex. Reticles for optical and night sights (see "Type"), which look like a classic crosshair with different line thicknesses: they are thin in the center, and noticeably thicker near the edges. The meaning of this combination is that thin lines do not “clutter up” the field of view at the aiming point, and thick lines remain visible even under adverse conditions (for example, at dusk) and allow you to aim at least approximately. In addition, the thickness of large lines and the distance between their edges can correspond to well-defined angles, which allows some of these sights to be used even as simple goniometers. However, these possibilities are very limited, and in general, "duplexes" are classic hunting nets.

- Half cross. Hunting net, the main elements of which are T-shaped. One of the varieties of semi-crosses - "German grid", it is also "stump" - consists of a vertical line from the edge to the center of the sight and two horizontal lines that do not reach it; the aiming point corresponds to the upper point of the central "stump", and the thickness of the lines and the distance between them can be specified in the documentation - this allows you to carry out the simplest measurements of angles. A more modern version of the half-cross is the crosshair, in which one line (from the center to the top edge) is much thinner than the rest, or even absent altogether.

- Dot. In its pure form, the dot is used exclusively in collimator sights (see "Type"). This is an extremely convenient option for such devices: there are no unnecessary details in the field of view of the shooter, only a mark that clearly shows exactly where the weapon is aimed - more is often not required when using collimators. The disadvantages of the dot in comparison with other marks in the sights of this type include less visibility, especially in bright ambient light. However, many sights allow you to set a fairly high brightness of the mark, and sometimes even increase its size, increasing visibility. Also note that for a point, the angular size can be specified, which can be useful for quick estimation of distances.
In addition, the dot can also be used in optical and night sights, but in such cases it is usually used as an addition to another scale - for example, it additionally highlights the intersection of lines in a semi-cross.

— Circle with a dot. Another type of marks, used in collimators as the main one, and in other types of sights - as an addition to a crosshair or other more traditional grid. However, the latter is rare, so let's focus on the first option. Compared to another popular "collimator" mark - a dot - the circle covers more visible space, however, it is very noticeable and often turns out to be more convenient when shooting offhand or sharply turning the weapon to the side. In addition, for both the circle and the dot, it often indicates the exact angular size, which gives extended (compared to the usual dot) possibilities for using the aiming mark as the simplest goniometric (rangefinding) scale.

- Circle with 2 dots. A variation of the circle with a point described on top, having a second, additional point - usually below the first, at a strictly defined angular distance from it. This expands the possibilities for using the sight as an impromptu rangefinder, and also allows you to "on the move" take an amendment when shooting at long distances - just aim at the second, lower point. However, such opportunities for collimators are extremely rarely required, so this option has not received much distribution either.

- Cross. Features of this type of brand depend on the type of sights in question - optical / night or collimator (see "Type"). In classical optics, a cross is the simplest crosshair of thin lines of the same thickness. Naturally, in terms of general specialization, such reticles are hunting, but they are also found in a fairly advanced variety of sights - sports models for benchrest (shooting from a machine gun at maximum range and accuracy). The convenience of the cross in such an application lies in the fact that the lines have a minimum thickness and practically do not block the view. In nightlights, this type of grid is usually one of several options available to choose from. But in collimators, the cross is in many ways similar to a circle with a dot - it is provided as one of the large, well-marked marks with a clearly defined angular size.

- Cross with a dot. A grid in the form of a crosshair of two lines (as a rule, quite thin), at the intersection of which a clearly visible point is applied. It is in this form, as a rule, that is used in collimator and other types of sights. In the first case, such a stamp is actually a slightly modified version of the usual cross (see on top). And in optics, the presence of a point allows you to additionally highlight the crosshairs, which is convenient in some situations; the general purpose of such sights is, of course, hunting.

- A cross with a circle. Stamp in the form of a cross, complemented by a circle. It can also be used in different types of sights and has its own specialization everywhere. In classical optics, such a grid usually has a hunting purpose, although there are also varieties with additional marks that expand the "tactical" functions. And even in the absence of such marks in the characteristics, the angular size of the circle is usually specified, which provides additional opportunities for impromptu measurement of distances. We also note that the cross itself can be both ordinary and duplex (see on top). The situation is similar in night sights, however, there a cross with a circle is usually only one of the available mark options. As for the collimators, they can use both a full-fledged crosshair in a circle, and a ring with “rays” protruding from it; in any case, such a mark is more noticeable than an ordinary cross.

— BDC. This reticle got its name from the English phrase Bullet Drop Compensation, which translates as “bullet drop compensation”. The BDC ballistic reticle allows for range correction based on the bullet's trajectory. It is calibrated for a specific ammunition and sharpened for quick aiming at various distances using the same type of bullets. Distance markers in a ballistic reticle are hash marks, circles, or dots. The main sign of their placement is that the vertical markings have different gaps, increasing towards the bottom. An additional distance scale is often placed in such grids on the "six" shoulder. In addition, the ammunition for which the reticle is calibrated is usually indicated (caliber, bullet weight, weight).

- Christmas tree. Informative reticle resembling a Christmas tree in its structure. Actually, this is where the name of this type of grid came from. Each array of dots on its "six o'clock" arm is longer than the previous one - the marks increase in width when viewed from top to bottom from the central crosshair. These markers are used to correct for wind drift, which is extremely important when conducting aimed fire at long distances. The most common herringbone reticle is found in hunting hybrids, tactical sights, and military rifle scopes.

- Rangefinder. This type includes all grids that do not belong to any of the types described on top and provide for special markings for measuring angles and distances. The specific design of such markings may be different, but the general principle of operation is the same everywhere: rangefinder marks allow you to determine the angular size of a visible object, and if the linear size of this object is known, you can easily estimate the distance to it (at least approximately). Each type of rangefinder reticle has its own rules for use.

Selection of aiming mark colour

The ability to change the colour of the aiming mark, more precisely, the colour with which it is highlighted (see above). This adjustment performs both an aesthetic and a practical function — against different backgrounds, some colours stand out more than others, and choosing the optimal colour allows you to make the brand as noticeable as possible.

Power source

The type of power used in the scope, in fact, describes the type of autonomous element (accumulator or battery) that the device is designed for.

The most popular elements in modern sights are CR2032 elements — characteristic "pills" with a diameter of 20 mm and a thickness of about 3 mm. Their shape fits very well into the layout of both optics and classical collimators (see "Type"), and the capacity, although relatively low, is quite sufficient for normal operation for a long time, because the power consumption of these types of sights is low. But in more “gluttonous” night, thermal imaging (see ibid) and holographic (see above) models, more solid batteries are usually used — most often either a pair of standard “finger” AA cells, or a 3.7 V CR123 element (diameter 17.5 mm, length 35 mm). In this case, the sight can be compatible with either one of these types, or both. It is also worth noting that AA and CR123 elements are also available as rechargeable batteries, which can be perfect for frequent use of the scope.

Sight length

The total length of the sight.

This parameter is important primarily for optical sights (see "Type"). Such devices can be quite large — from 20 – 30 cm in the most compact models up to 40 cm or more ; and the distance from the eyepiece to the eye when aiming must be strictly defined. So before buying, it's ok to clarify whether it will be possible to correctly place the selected model on the weapon. But collimators, even the largest ones, are very compact, usually there are no problems with their installation, so in such models the length does not play a special role.