USA
Catalog   /   Sound & Hi-Fi   /   Musical Instruments   /   Pianos & Keyboards   /   Synthesizers

Comparison Casio CTK-3500 vs Medeli M331

Add to comparison
Casio CTK-3500
Medeli M331
Casio CTK-3500Medeli M331
Outdated ProductOutdated Product
TOP sellers
Typesynthesizer (rompler)synthesizer (rompler)
Keys
Number of keys6161
Sizefull sizefull size
Mechanicsactiveactive
Rigidityunweightedsemi-weighted
Specs
Polyphony48 voices128 voices
Built-in timbres400 шт653 шт
Auto accompaniment
Accompaniment styles100 шт240 шт
Learning mode
Tempo change20 – 25530 – 280
Metronome
Sequencer (recording)
Mixer
Built-in compositions
 /160/
Effects and control
Timbres layering
Keyboard split
Reverberation
 /10/
 /10/
Chorus
 /8/
Transposition
Pitch controller
Fine tuning
Connectors
Inputs
mini-Jack (3.5 mm)
 
mini-Jack (3.5 mm)
MIDI in
Microphone1 шт
Connectable pedals1 шт1 шт
Outputs
USB to host (type B)
headphones /combined with linear/
USB to host (type B)
headphones
Linear outputs1
In box
In box
music stand
PSU /may not be supplied/
 
PSU
General
Built-in acoustics4 W6 W
Number of bands11
Displaymonochromemonochrome
Power consumption9.5 W
Autonomous power supply
aA batteries /6 pcs/
Operating hours12 h
Dimensions (WxHxD)946x92x307 mm956x133x360 mm
Weight3.4 kg5 kg
Color
Added to E-Catalogaugust 2017august 2017

Rigidity

Unweighted. Keys with a very low pressing force, literally "failing" under the fingers. This option is well suited for inexpensive synthesizers with passive mechanics (see above), but is rarely used in active models — a small resistance force makes it difficult to choose the optimal pressing force.

— Semi- weighted. Medium-strength keys, not up to the hardness of a full-fledged piano, but showing noticeably more resistance than unweighted ones. This variant is most popular among instruments with active mechanics (see above) — the force on the keys provides adequate feedback and at the same time playing such an instrument does not cause any special difficulties even for those who previously dealt only with unweighted keyboards.

Weighted. Keys with high actuation force, comparable to that of a classical piano. Used only in professional hammer action instruments (see above) — high rigidity is a must for such mechanics (more precisely, for the response that it must provide).

Polyphony

The polyphony supported by a synthesizer, in other words, is the number of “voices” (tone generators) that can simultaneously sound on it.

This parameter is often described as the number of notes that can be played simultaneously on the keyboard. However, this is not entirely true due to the fact that in many timbres one note can activate several tone generators. As a result, for example, to play a chord of 3 notes in a timbre with 4 tone generators per note, polyphony of at least 3 * 4=12 voices is required. In addition, Auto Accompaniment and Preset Songs (see related sections) also use tone generators, requiring even more voices to work effectively with these features.

The minimum value for a more or less functional modern synthesizer is polyphony for 32 voices — and even then such an instrument can be used mainly for initial training and simple melodies. For a more solid application, it is desirable to have at least 50 – 60 voices, and in professional models (in particular, workstations where you have to deal with several audio tracks at once), there are models with polyphony for 150 tone generators or more.

In general, a more advanced synthesizer is likely to have more extensive polyphony, however, it is only possible to evaluate the class of an instrument by this parameter very approximately — instruments with the same number of voices can differ greatly in level. The only exception to this rule are children's synthesizers (see "T...ype"), which support up to 20 voices.

Built-in timbres

The number of built-in sounds provided in the synthesizer.

The number of timbres is often described as the number of instruments that a given model can imitate. However, this is not entirely true — rather, this parameter can be called "the number of instruments and sound effects." For example, the same instrument — an electric guitar — with different "gadgets" (distortion, overdrive) will sound differently, and in the synthesizer each such gadget will be considered a separate timbre. The “drums” timbre usually combines different types of drums and other percussion instruments — in other words, it allows you to portray both the “bass drum” and the cymbals without switching settings, just by pressing the desired keys. And some timbres may not have analogues among real instruments at all.

The more built-in timbres, the more extensive the possibilities of the synthesizer, the more diverse the sounds that can be extracted from it. At the same time, in high-end models like workstations (see "Type"), this number can reach 1000 or even more.

Accompaniment styles

The number of auto accompaniment styles (see above) originally provided in the synthesizer, in other words, the number of accompaniment options available to the user.

The more extensive this set, the higher the probability of finding among these melodies suitable options for a particular case. At the same time, the abundance of styles in itself is not yet a 100% guarantee that among them there will be a suitable one, especially since different synthesizer models can differ markedly in a specific set of melodies. So the list does not hurt to clarify before buying. Also note that the situation can be corrected by user styles (see below) — many synthesizers with auto accompaniment support them.

Learning mode

The presence of a learning mode in the design of the synthesizer.

The purpose of this function is clear from the name. It is most often based on the following principle: the synthesizer itself tells the student which keys to press, displaying the keyboard on the display or highlighting the necessary keys using the backlight (if available, see above). Of course, at different levels of learning, the format of such prompts will also be different: for example, at the very beginning, the synthesizer highlights the necessary notes until they are pressed, and at the final stage it highlights them at the tempo at which you need to play the melody, and evaluates the accuracy of the student pressing the desired keys. There are also other features and nuances of learning — for example, the mode of separate learning of parts for the left and right hands, when the instrument itself plays one part and tells the student how to play the second. In addition, a metronome function is practically mandatory for a synthesizer with this mode (see below).

Regardless of the specific functionality, this mode will be very useful for those who are just developing their keyboard playing skills.

Tempo change

The range in which you can change the tempo of the programme played by the synthesizer — auto accompaniment, lesson tune (see above), metronome (see below), recorded sample, etc.

Pace is measured in beats per minute. Changing it allows you to adjust the speed of the synthesizer to the specifics of the situation — for example, slightly slow down the tutorial if it is too hard to master at the initial pace. The wider the range of tempo adjustment, the more options the musician has to choose from, especially in the area of very slow and very fast tempos.

Note that the traditional range of musical tempos covers values from 40 beats / min (“grave”, “very slowly”) to 208 beats / min (“prestissimo”, “very fast”), however, in synthesizers it can be more extensive — for example, 30 – 255 bpm.

Sequencer (recording)

The sequencer is a device that allows you to record music played on the instrument in real time. Recording is usually done in MIDI format. At the same time, the capabilities of the sequencer can include not only the recording and playback of the music being played, but also advanced options for editing it: sequential overlay of several parts, mixing of recorded tracks, changing the volume, tempo, timbre, key of the recorded compositions, quantization to eliminate tempo irregularities, etc. .P. The specific capabilities of the sequencer, usually, directly depend on the type (see above) and the price category of the synthesizer. However, anyway, this function can be an important help for both a novice musician and a professional.

Mixer

The presence of a mixer in the design of the synthesizer.

A mixer in this case is a device designed to control individual audio channels that make up the sound of a synthesizer as a whole. The list of these channels includes, in particular, the main voice, the layered voice (see “Dubbing voices”), several auto accompaniment channels (main, bass, drums, etc.). With a mixer, the musician can manually control these channels — turn some of them on and off, switch the timbre, tempo, key, etc. This greatly expands the possibilities for using the synthesizer.

Chorus

The presence of a chorus effect in the synthesizer.

The word "chorus" comes from chorus, "chorus", and the purpose of this function is quite consistent with the origin of its name — it creates the effect of the choral sound of several instruments. To do this, the original sound signal is copied (one or more times) and the copies are added to the overall sound with a small, up to 30 ms, time shift, and this shift is constantly changing. In this way, a small but noticeable difference in individual "voices", characteristic of a real choir, is imitated. However it is worth noting that a full-fledged resemblance to a choral performance with the help of a chorus cannot be achieved even on the most advanced synthesizer; however, this effect in itself sounds very interesting, thanks to which it does not lose its popularity.
Casio CTK-3500 often compared
Medeli M331 often compared