USA
Catalog   /   Sound & Hi-Fi   /   Musical Instruments   /   Pianos & Keyboards   /   Synthesizers

Comparison Casio CTK-3500 vs Yamaha PSR-E243

Add to comparison
Casio CTK-3500
Yamaha PSR-E243
Casio CTK-3500Yamaha PSR-E243
Outdated Product
from $200.00
Outdated Product
TOP sellers
Typesynthesizer (rompler)synthesizer (rompler)
Keys
Number of keys6161
Sizefull sizefull size
Mechanicsactivepassive
Rigidityunweightedsemi-weighted
Specs
Polyphony48 voices32 voices
Built-in timbres400 шт385 шт
Auto accompaniment
Accompaniment styles100 шт100 шт
Learning mode
Tempo change20 – 25532 – 280
Metronome
Built-in compositions
Effects and control
Timbres layering
Keyboard split
Reverberation
 /10/
Chorus
Transposition
Fine tuning
Connectors
Inputs
mini-Jack (3.5 mm)
 
Connectable pedals1 шт1 шт
Outputs
USB to host (type B)
headphones /combined with linear/
USB to host (type B)
headphones /combined with linear/
Linear outputs11
In box
In box
music stand
PSU /may not be supplied/
 
PSU /may not be supplied/
General
Built-in acoustics4 W5 W
Number of bands11
Displaymonochromemonochrome
Power consumption9.5 W8 W
Autonomous power supply
aA batteries /6 pcs/
aA batteries /6 pcs/
Operating hours12 h
Dimensions (WxHxD)946x92x307 mm945x117x348 mm
Weight3.4 kg4 kg
Color
Added to E-Catalogaugust 2017october 2016

Mechanics

Type of action used in synthesizer keys.

— Passive. The simplest type of mechanics, when each key is, in fact, a “switch” for its note: it only turns the sound on and off, while the volume of this sound does not depend on the strength and intensity of pressing. Passive keyboards usually have unweighted, less often semi-weighted hardness (see below). Their main and, perhaps, the only advantage is their low cost, due to the simplicity of design. At the same time, the capabilities of such tools are very limited, and even when training, it is recommended to use them only at the very initial stages. As a result, passive mechanics are used exclusively in the simplest low-cost-level synthesizers, which are more suitable for the role of a toy for entertainment, rather than a full-fledged instrument.

— Active. A mechanic that provides a relationship between volume and pressing force: the harder the key is pressed, the louder and sharper the sound will be. Most often combined with semi-weighted, occasionally unweighted hardness (see below). Such keys already make it possible to control the dynamics of each note: select its volume "on the fly", highlight accents, use special techniques, etc. This feature is especially important in training, when you need to train to control the effort on each individual finger. Active mechanics are highly recommended even for an inexpensive synthesizer, and for a mid-range instrument it is almost man...datory, as well as for serious learning. At the same time, many models may provide sensitivity adjustment, or even a complete switch to passive mode (for example, to simulate some instruments).

— Hammerhead. The most advanced kind of mechanics. Like the active one, it provides volume control depending on the force of pressing, but it fundamentally differs in response: hammer action is used only in weighted keyboards (see "Rigidity"), and the feeling when playing it is close to playing on a real piano. The degree of approximation, however, can be different — some models are indistinguishable in sensations from the piano, in others the mechanics are simpler. However, anyway, such features are not cheap, despite the fact that the real need for a "piano" response is extremely rare. As a result, hammer action keyboards are found mainly among top-class instruments, mainly workstations (see "Type") with full-size keyboards for 88 keys.

Rigidity

Unweighted. Keys with a very low pressing force, literally "failing" under the fingers. This option is well suited for inexpensive synthesizers with passive mechanics (see above), but is rarely used in active models — a small resistance force makes it difficult to choose the optimal pressing force.

— Semi- weighted. Medium-strength keys, not up to the hardness of a full-fledged piano, but showing noticeably more resistance than unweighted ones. This variant is most popular among instruments with active mechanics (see above) — the force on the keys provides adequate feedback and at the same time playing such an instrument does not cause any special difficulties even for those who previously dealt only with unweighted keyboards.

Weighted. Keys with high actuation force, comparable to that of a classical piano. Used only in professional hammer action instruments (see above) — high rigidity is a must for such mechanics (more precisely, for the response that it must provide).

Polyphony

The polyphony supported by a synthesizer, in other words, is the number of “voices” (tone generators) that can simultaneously sound on it.

This parameter is often described as the number of notes that can be played simultaneously on the keyboard. However, this is not entirely true due to the fact that in many timbres one note can activate several tone generators. As a result, for example, to play a chord of 3 notes in a timbre with 4 tone generators per note, polyphony of at least 3 * 4=12 voices is required. In addition, Auto Accompaniment and Preset Songs (see related sections) also use tone generators, requiring even more voices to work effectively with these features.

The minimum value for a more or less functional modern synthesizer is polyphony for 32 voices — and even then such an instrument can be used mainly for initial training and simple melodies. For a more solid application, it is desirable to have at least 50 – 60 voices, and in professional models (in particular, workstations where you have to deal with several audio tracks at once), there are models with polyphony for 150 tone generators or more.

In general, a more advanced synthesizer is likely to have more extensive polyphony, however, it is only possible to evaluate the class of an instrument by this parameter very approximately — instruments with the same number of voices can differ greatly in level. The only exception to this rule are children's synthesizers (see "T...ype"), which support up to 20 voices.

Built-in timbres

The number of built-in sounds provided in the synthesizer.

The number of timbres is often described as the number of instruments that a given model can imitate. However, this is not entirely true — rather, this parameter can be called "the number of instruments and sound effects." For example, the same instrument — an electric guitar — with different "gadgets" (distortion, overdrive) will sound differently, and in the synthesizer each such gadget will be considered a separate timbre. The “drums” timbre usually combines different types of drums and other percussion instruments — in other words, it allows you to portray both the “bass drum” and the cymbals without switching settings, just by pressing the desired keys. And some timbres may not have analogues among real instruments at all.

The more built-in timbres, the more extensive the possibilities of the synthesizer, the more diverse the sounds that can be extracted from it. At the same time, in high-end models like workstations (see "Type"), this number can reach 1000 or even more.

Tempo change

The range in which you can change the tempo of the programme played by the synthesizer — auto accompaniment, lesson tune (see above), metronome (see below), recorded sample, etc.

Pace is measured in beats per minute. Changing it allows you to adjust the speed of the synthesizer to the specifics of the situation — for example, slightly slow down the tutorial if it is too hard to master at the initial pace. The wider the range of tempo adjustment, the more options the musician has to choose from, especially in the area of very slow and very fast tempos.

Note that the traditional range of musical tempos covers values from 40 beats / min (“grave”, “very slowly”) to 208 beats / min (“prestissimo”, “very fast”), however, in synthesizers it can be more extensive — for example, 30 – 255 bpm.

Timbres layering

The ability to overlay different timbres of the synthesizer sound on top of each other. This creates the effect of the sound of two (or even more) instruments at once — for example, piano and violin. At the same time, in advanced models, it may be possible to set different settings for different timbres so that the sameness of the extracted notes is not so noticeable — for example, the same "violin" can be set to smooth transitions between notes, while on the "piano" they will sound jerky.

Keyboard split

Possibility of dividing the keyboard of the synthesizer into two parts, each of which is responsible for its own timbre of sound. Thus, on one keyboard, you can play two "instruments" at once in real time — for example, accompany the solo part of the violin with chords of a string orchestra. At the same time, unlike auto accompaniment (see above), all notes are taken by the musician himself, without relying on the automatic settings prescribed in the programme.

Usually, several “split keyboard” combinations are pre-written in the synthesizer’s memory, however, some models allow you to separately select a timbre for each half, at the discretion of the musician.

Chorus

The presence of a chorus effect in the synthesizer.

The word "chorus" comes from chorus, "chorus", and the purpose of this function is quite consistent with the origin of its name — it creates the effect of the choral sound of several instruments. To do this, the original sound signal is copied (one or more times) and the copies are added to the overall sound with a small, up to 30 ms, time shift, and this shift is constantly changing. In this way, a small but noticeable difference in individual "voices", characteristic of a real choir, is imitated. However it is worth noting that a full-fledged resemblance to a choral performance with the help of a chorus cannot be achieved even on the most advanced synthesizer; however, this effect in itself sounds very interesting, thanks to which it does not lose its popularity.

Inputs

— mini-Jack (3.5 mm). Line-level analogue audio input using a 3.5mm mini-jack. The line input itself is used to connect an external analogue audio signal to the synthesizer — for example, from a computer sound card. The use of such a connection can be different: playing accompaniment through the built-in speakers of the instrument, switching the signal to an external amplifier with “mixing” the sound of the synthesizer itself into it, etc. Specifically, the 3.5 mm mini-Jack connector is small in size, it is popular mainly in portable equipment and inexpensive stationary devices — “serious” audio equipment is usually equipped with more reliable connectors, like Jack (see below). As a result, an input with this type of connector is typical mainly for entry-level synthesizers.

— Jack (6.35 mm). Line-level analogue audio input using a 6.35 mm jack. By purpose, such an input is completely similar to the input with a 3.5 mm mini-Jack jack described above, however, the Jack connector is larger, provides a more reliable and high-quality connection and is considered more suitable for stationary audio equipment, especially high-end ones. Therefore, in synthesizers of an average and advanced level, usually, this type of line input is used. At the same time, we note that a 3.5 mm plug can be connected to a 6.35 mm jack using a simple adapter.

— Digital. Input for connecting to a digital audio signal synthesizer. It is similar in purpose to the linear interfaces descri...bed above, but differs both in signal format and in connector type — most often it is a coaxial S / P-DIF interface using an RCA connector, although other options are possible. Digital outputs are quite popular both in professional audio equipment and in home appliances like PCs and even TVs, so such an input may be useful.

— MIDI. MIDI is originally a digital signal format used in electronic musical instruments. Each key pressed on the synthesizer gives just such a signal: it contains data on the duration, force and speed of pressing, as well as the note number, and based on the control signal (MIDI event), the “hardware” of the synthesizer generates the desired sound. Accordingly, the MIDI input allows the synthesizer to receive MIDI events from external electronic musical devices — other synthesizers, MIDI controllers, etc. This connection can be useful, for example, if the external instrument does not have the desired timbre; in addition, many synthesizers are capable of recording received MIDI signals. In some cases, the possibility of switching such a signal via MIDI thru may also be useful (see "Outputs").

USB (type A). A classic USB connector that allows you to connect various external devices to the synthesizer — primarily flash drives and other drives, other peripherals are rarely supported. The features available when working with a flash drive depend on the general functionality of the synthesizer and may be different in different models. So, some instruments are capable of playing music from such a carrier, which plays the role of accompaniment for the main part — this can be more convenient than using auto accompaniment. Others are able to record music on a flash drive. It may also include updates to the Voice Set and/or Auto Accompaniment Styles (see above), firmware updates, etc.

Card Reader. A slot for reading memory cards, most often SD: this is a universal format widely used in many types of modern electronics. Like a USB flash drive (see above), the card reader can be used for different purposes — most often for playing musical accompaniment or recording music, but there are other options (loading additional timbres, updating firmware, etc.).
Casio CTK-3500 often compared
Yamaha PSR-E243 often compared