Dark mode
USA
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   AV Receivers

Comparison Onkyo TX-SR343 vs Onkyo TX-SR444

Add to comparison
Onkyo TX-SR343
Onkyo TX-SR444
Onkyo TX-SR343Onkyo TX-SR444
from $360.00 up to $367.20
Outdated Product
from $375.00 up to $486.00
Outdated Product
TOP sellers
Device typeAV ReceiverAV Receiver
CPU
DAC frequency192 kHz192 kHz
Audio DAC24 bit24 bit
Auto sound calibration
Auto level
Ultra HD4K4K
UpscalingUltra HD (4K)Ultra HD (4K)
3D
Multi Zone
Tech specs
Number of channels5.17.1
Power per channel100 W100 W
Signal to noise ratio100 dB100 dB
Acceptable acoustic impedance6 Ohm6 Ohm
Frequency range10 – 10000 Hz10 – 100000 Hz
Bi/Tri-amping
Media player and tuner
Tuner and playback
AM/FM radio
USB drive
AM/FM radio
 
Playable formatsMP3, WMA, AAC
Communications (interface)
Interfaces
Bluetooth
Remote control negotiation
Bluetooth
Remote control negotiation
Decoder support
Decoders
 
Dolby Digital
Dolby Digital Plus
Dolby TrueHD
Dolby Pro Logic II
DTS
DTS Express
DTS 96/24
DTS-HD High Resolution Audio
DTS-HD Master Audio
 
 
DTS Neo:6
Dolby Atmos
Dolby Digital
Dolby Digital Plus
Dolby TrueHD
 
DTS
DTS Express
DTS 96/24
DTS-HD High Resolution Audio
DTS-HD Master Audio
DTS ES Matrix 6.1
DTS ES Discrete 6.1
DTS Neo:6
Inputs
RCA6 pairs6 pairs
Coaxial S/P-DIF1 шт1 шт
Optical2 шт2 шт
HDMI4 шт4 шт
Composite3 шт2 шт
Component2 шт2 шт
Outputs
RCA1 pairs1 pairs
HDMI1 шт1 шт
Composite1 шт1 шт
On headphones6.35 mm (Jack)6.35 mm (Jack)
Front panel
Headphone output
Linear
Composite
General
Power consumption370 W420 W
Standby consumption0.2 W0.3 W
Dimensions (WxDxH)435x328x160 mm435x328x160 mm
Weight7.8 kg7.8 kg
Added to E-Catalognovember 2015november 2015

Auto sound calibration

In this case, the function of automatic adjustment of each individual sound channel in terms of level and delay is implied so that all of them together provide surround sound that best matches the intention of the creators of the film or musical composition. The need for such a setting is due to the fact that practically no room (neither residential, nor even specialized) is acoustically perfect: the sound propagation is affected by the wall material, floor covering, furniture (sofas, wardrobes, etc.) and other factors. Therefore, the technically correct arrangement of the speakers alone does not guarantee a full-fledged surround sound.

Typically, automatic tuning uses a microphone placed at the intended listening position. During the calibration process, the device outputs test sound signals through the acoustics and “listens” to the features of the sound through the microphone, if necessary, independently changing the audio parameters.

Such a function can greatly simplify the preparation for work — after all, the device will carry out the main part of the setup on its own. However, keep in mind that even in the most advanced receiver models, automatic calibration algorithms are not perfect. As a result, it is highly likely that the automatically set parameters will not meet the tastes of demanding audiophiles. In addition, the reliability of the calibration is also highly dependent on the characteristics of the microphone used — and options with high...sound quality can be quite expensive.

Multi Zone

The possibility of using the receiver for simultaneous transmission of signals from different sources to screens and speakers located in different places (zones). For example, in a large house, you can simultaneously stream a movie from a Blu-ray player to a screen in a large room, a TV show to a TV in the kitchen, and a radio programme to speakers in a library. Another option for using Multi-Zone is entertainment centers with several rooms of different types (for example, a cinema hall, a roller skating rink and a cafe).

Number of channels

The maximum number of channels that the receiver can output to external speakers. This parameter is specified for all types (see above): even AV processors that do not have an amplifier as such are often equipped with a very extensive set of audio processing tools (and this set is sometimes even wider than in models with amplifiers).

The most popular options by the number of channels today are as follows:

— 2.1. The simplest option found in modern AV receivers is the classic two-channel stereo sound, supplemented by a third channel for a subwoofer. It is worth noting here that the "volume" of such a sound is very limited: it allows you to simulate the shift of the sound source to the left or right, but does not cover the space on the sides and behind the listener. Receivers of this kind are usually entry-level devices.

— 3.1. Such a system is usually the 2.1 described above, supplemented by a third front speaker — in the centre. This provides a more authentic sound from the front. And for some 3.1 systems, design tricks are claimed that allow them to be used for surround sound, similar to 5.1. Rear channels in such systems are simulated by reflecting sound from the walls behind the user. Of course, the sound accuracy is noticeably lower than that of a full-fledged 5.1, but this option may be optimal in tight spaces where there is no space for a full set of six-channel acoustics.

5.1. The most popular surround sound format that can provide the effect of "environment". 5 main channels include a centre, two front (left-right) and two rear (similarly), a unit indicates a separate low-frequency channel for a subwoofer.

— 5.2. Sound format similar to 5.1 above, except for two channels for subwoofers instead of one. This improves the quality of the bass sound, which can be useful for films with a lot of special effects, live performance recordings, etc.

— 6.1. A sound format with an expanded number of main channels relative to the classic 5.1. The sixth main channel in this format is usually the centre back — this increases the accuracy of the sound transmission in the back of the stage.

— 6.2. 6.1 version of the format described above, supplemented by a second subwoofer; this improves the quality of low frequency transmission and allows you to cover a larger area.

— 7.1. With this sound format, five main channels (similar to the 5.1 system described above) are supplemented with two more. There are a lot of options for installing speakers for these channels — for example, these can be additional speakers above two front or two rear speakers, two separate side speakers, an additional “centre” pair on the rear channel, etc. Anyway, an increase in the number of channels makes it possible to achieve a more accurate transmission of “surround” sound compared to 5.1, however, much less content has been released for such systems.

— 7.2. A variation on the 7.1 format (see above) that allows the use of two separate subwoofers; this increases the accuracy of the transmission of low frequencies and expands the possibilities for their adjustment.

— 8.4. A specific variant found in single models of AV receivers. It is not so much a generally accepted sound format as an illustration of advanced configuration options: up to 8 main speakers and up to 4 subwoofers can be connected to the device, which gives very extensive fine-tuning options (however, such options are not cheap).

— 9.1. One of the most advanced surround sound formats today: it includes 5 classic main channels (similar to a 5.1 system) and 4 additional ones, the location of which can be different — for example, two side speakers and two upper ones above the left and right front, or even 4 speakers, directed towards the ceiling. The 9.1 format allows you to achieve very high fidelity of multi-channel audio transmission, but it is expensive, difficult to set up, and very little content has been released for such systems.

— 9.2. Modification of the above 9.1 format, supplemented by a second subwoofer for more accurate and high-quality reproduction of low-frequency sound.

— 11.1. Further, after 9.1, expansion and improvement of the idea of multi-channel sound. Usually in 11.1 systems, the five "classic" main channels (see 5.1) are supplemented with six more in the following way: two speakers to the left and right of the centre (in addition to the left and right front), two height speakers above the main front and two more — above main rear. This significantly increases the accuracy of surround sound transmission and adds the ability to shift it not only horizontally, but also vertically. However, the price and complexity of setting up such systems is appropriate, so they are designed more for the professional sphere (for example, cinema halls of entertainment centers) than for home use.

— 11.2. Systems almost identical to those described above 11.1, but supplemented by a second subwoofer. The latter is useful not only for reliability, but also for covering a vast area.

— 12.4. A top-of-the-line AV receiver option that is designed to handle all existing surround sound formats (including "true" 3D sound) and offers extremely wide customization options (albeit at an appropriate price).

— 13.2. Another format typical for luxury AV receivers and similar to 12.4 described above (with the exception of differences in the number of channels, which are not critical in this case).

— 15.1. A very rare and expensive option, designed for the use of mainly advanced acoustic systems — in particular, the halls of small cinemas.

Note that this paragraph indicates the most advanced sound format that the receiver is capable of working with; the general set also includes simpler options. For example, 7.1 systems usually handle 5.1 without any problems, not to mention stereo.

Frequency range

The range of sound frequencies that the receiver is capable of outputting (this parameter can also be specified for models without their own amplifier, see “Number of channels” for more details). The completeness of the transmitted sound depends on this parameter; of course, the sound quality in general is highly dependent on a number of other factors (for example, frequency response), but the wider the frequency range, the less risk that the amplifier will completely “cut off” some part of the sound. On the other hand, it should be taken into account here that the normal hearing range of the human ear is approximately 16 – 20,000 Hz, and deviations from these limits are rather small. And although many modern receivers provide a much wider frequency range, however, this is more of a marketing ploy than a really significant indicator (or some kind of "side defect" in the design of a high-quality amplifier).

It is also worth considering that in order to reproduce the full frequency of the amplifier, you will need speakers with the appropriate characteristics.

Bi/Tri-amping

The ability of the receiver to work in Bi-amping and/or Tri-amping mode.

The basic principle of both of these modes is that the audio signal is divided into several frequency bands (LF and HF for Bi-amping, in the case of Tri-amping, mid frequencies are separated separately), and each band is processed by its own amplifier and output to its own specialized set of speakers. . In this way, a noticeable improvement in sound quality can be achieved. However, note that the specific implementation of this function in AV receivers may be different. The simplest option involves two or three built-in power amplifiers, each of which outputs the entire audio range to its own set of connectors. To such a device, you need to connect an external crossover (frequency filter) or speakers with built-in filters for each frequency band. More advanced receivers may have their own built-in crossovers, in which case only part of the frequency range is output to each amplifier with a set of connectors; this eliminates the need for external frequency filters. However, anyway, to use Bi/Tri-amping, you will need speakers that support this connection format.

Tuner and playback

AM/FM radio. The presence of a built-in tuner that allows you to receive AM and FM radio broadcasts without additional devices (except perhaps an antenna is required, and then not always). In FM, it is possible to realize the transmission of high-quality stereo sound, however, the waves propagate only within the line of sight (10-20 km); therefore, most of the stations in this range are classified as "urban music". In AM, the transmission range is already measured in hundreds of kilometers, but the sound quality is noticeably lower; therefore, such stations usually specialize in talk programs (particularly news).

USB stick. The ability to connect a USB drive to the receiver — for example, a "flash drive" or an external hard drive — and play content from it directly. This requires a USB connector. Most often, in models with this function, it is located on the front panel (see below) — this provides ease of connection; at the same time, there are exceptions. Also note that the very presence of USB does not necessarily imply the possibility of playing from external media — this interface can be used for service purposes, for example, to update the firmware or play from a PC (see "Advanced (inputs) — USB Type B").

Network audio streaming. The ability to play streaming audio over a local network or the Internet (including from services like Grooveshark o...r Last.Fm). The name "streaming" is due to the fact that each song is played directly from the network, without being written to the receiver's own permanent storage. This function, by definition, requires connection to computer networks; most often, a Wi-Fi module is used for this purpose (see "Interfaces") or a LAN connector.

— Internet radio. The ability to use the receiver to receive and play Internet radio broadcasts. This feature is similar in many ways to the network audio described above — in particular, it requires a network connection to work, and the data is streamed; however, in the case of network audio, the user himself chooses what and when to listen, here the broadcast is similar to conventional radio transmissions and is controlled from the radio station. Actually, many major stations broadcast their programs not only on the traditional air, but also via the Internet; There are also specialized projects broadcasting only on the Web. In general, the choice of programs is much more extensive than for conventional radio broadcasting — after all, Internet radio has no range restrictions. And the receivers themselves may provide additional tools for managing such broadcasting — for example, catalogs, search by genres, languages, etc.

Playable formats

Audio and video file formats that the receiver is capable of playing on its own. Models with player features generally support most popular media file types (particularly AVI, MPEG and MKV for video, MP3, WAV and WMA for audio), but the file set may have its own peculiarities. This item allows you to find out.

Decoders

A decoder can be broadly described as a standard in which digital audio (often multi-channel) is recorded. For normal playback of such sound, it is necessary that the corresponding decoder is supported by the device. The first signs of multi-channel decoding were Dolby Digital and DTS, gradually improving and introducing new features. The final stage for 2020 is Dolby Atmos and DTS X decoders. And the intermediate ones were Dolby TrueHD, Dolby Pro Logic II, DTS-HD, DTS ES, DTS Neural: X, DTS Neo (6, X).

Dolby Atmos. A decoder that does not use a rigid distribution of sound across channels, but the processing of audio objects, due to which it can be used with almost any number of channels on a reproducing system — the sound will be divided between channels so that each audio object is heard as close as possible to its proper place. When using Dolby Atmos, in-ceiling speakers (or speakers facing the ceiling) are highly desirable. However, in extreme cases, you can do without them.

— DTS X . An analogue of the Dolby Atmos described above, when the sound is distributed not through individual channels, but through audio objects. The...digital signal contains information about where (according to the director's intention) the object audible to the user should be and how it should move, and the processor of the reproducing device processes this information and determines exactly how the sound should be distributed over the available channels in order to achieve the required localization. Thanks to this, DTS X is not tied to a specific number of audio channels — there can be as many as you like, the system will automatically divide the sound into them, achieving the desired sound. Also note that this decoder allows you to separately adjust the volume of dialogues.

IMAX Enhanced. The IMAX Enhanced Mark of Conformity is awarded to equipment that meets the audio certification requirements of IMAX Corporation. Combined with DTS audio technology to deliver signature IMAX theater-like sound in the home. The most accurate reproduction of such audio is possible in systems with a large number of channels (5.1 or more). Note that for a fully immersive experience, IMAX Enhanced certification must also apply to video equipment for playing content (TV, projector, etc.).

Composite

The number of composite inputs provided in the design of the receiver.

Note that in this case, we do not mean a full-size composite interface that uses three sockets (video and two stereo sound channels), but only one connector — video. This is due to the fact that the sound can be output through standard RCA audio connectors. The video output also uses an RCA type connector, usually a characteristic yellow colour.

Due to the fact that all image data is transmitted over a single cable, the composite interface is somewhat inferior to the component (see above) in terms of video quality, and the bandwidth allows you to work only with a standard definition signal (not HD); and there is no talk of volumetric sound. On the other hand, this connection method has long been used in video technology and can be useful for connecting outdated devices (such as VHS VCRs).

As for the quantity, the presence of several inputs allows you to connect several signal sources to the receiver at once with the corresponding outputs and switch between them through software settings without fiddling with switching cables.
Onkyo TX-SR343 often compared
Onkyo TX-SR444 often compared