USA
Catalog   /   Camping & Fishing   /   Fishing   /   Boat Motors

Comparison HDX F5BMS vs Hidea HDF5HS

Add to comparison
HDX F5BMS
Hidea HDF5HS
HDX F5BMSHidea HDF5HS
Outdated Product
from $822.68 up to $910.00
Outdated Product
TOP sellers
Applicationboatboat
Motor typepropellerpropeller
Motor
Engine typepetrolpetrol
Motor duty cyclefour strokefour stroke
Maximum power5 hp5 hp
Maximum power3.6 kW3.68 kW
Maximum revolutions5000 rpm5500 rpm
Number of cylinders1 pcs1 pcs
Capacity112 cm3112 cm3
Piston diameter59 mm59 mm
Piston stroke41 mm41 mm
Coolingairliquid
Exhaust systemabove propellerabove propeller
Fuel system
Fuel system typecarburetorcarburetor
Fuel tankbuilt-inbuilt-in
Fuel tank volume1.3 L1.1 L
Recommended fuelgasoline AI-95gasoline AI-92
Drive unit
Gear ratio2.082.08
Propeller screw3-bladed3-bladed
Gear
forward
neutral
 
forward
neutral
reverse
Equipment
Transom height (deadwood)381 mm381 mm
Control systemtillertiller
Launch typemanualmanual
Leg lift (trim)manualmanual
General
Weight24.5 kg22 kg
Added to E-Catalogfebruary 2015february 2015

Maximum power

The maximum operating power of the outboard motor, expressed in kilowatts.

The practical value of motor power is described in detail in “Maximum power" is higher. Here we note that the kilowatt (derivative of watt) is just one of the units of power used in fact along with horsepower (hp); 1 HP ≈ 735 W (0.735 kW). Watts are considered the traditional unit for electric motors (see "Engine Type"), but for a number of reasons, outboard motor manufacturers use this designation for gasoline models as well.

Maximum revolutions

The highest shaft speed that the outboard motor is capable of developing.

Theoretically, the speed of rotation of the propeller (or turbine — see "Motor type") depends on the engine speed, and, accordingly, the speed that the boat is capable of developing. However, in addition to this indicator, many other factors also affect the performance of the motor — engine power (see above), gear ratio (see below), propeller design, etc. As a result, situations are quite normal when a more powerful and high-speed motor has lower revolutions than the weaker one. Therefore, this parameter is, in fact, a reference one, and has almost no practical value when choosing. Unless it can be noted that high-speed motors are more susceptible to noise and vibration than low-speed ones; however, this moment can be compensated by the use of various technical tricks.

Cooling

The type of cooling system provided in the design of the motor.

— Air. Cooling effected by contact of air with heating parts of the engine. Air cooling systems are extremely simple, they do not require the construction of complex circuits through which liquid must circulate — a fan is enough (and some models even get by with passive radiators — characteristic ribbed protrusions on heating parts). Another advantage is the ability to work effectively regardless of the presence of impurities in the water, which allows such engines to be used quite effectively in polluted and overgrown water bodies. On the other hand, the efficiency of such cooling is low, and it is suitable only for low power units — up to 15 hp. Also note that this option is usually indicated for electric motors (see "Motor type"): although the electric motor in them is often under water and cooled by water, not air, the key point in this case is the absence of a special cooling circuit in the design.

Water. Cooling, carried out, in accordance with the name, with the help of water. Note that we are not talking about liquid, but specifically about water cooling: the water necessary for the operation of such systems does not circulate in a vicious circle, but is taken overboard and discharged there after passing through the circuit. This is the main difference between boat cooling systems and "land" ones. If we compare this type of cooling with air, then...water systems are more complicated and expensive, but much more efficient and suitable for motors of almost any power. Note that in inexpensive low-power units, water is supplied by gravity, due to the pressure created by the screw, and in more advanced models a special pump is used.

Fuel tank volume

The total volume of the fuel tank provided in the design or delivery set of the outboard motor (depending on the type of tank — see "Fuel tank").

The larger the capacity of the fuel tank, the longer the engine will be able to work without refueling, the less often it will be necessary to replenish the fuel supply in the tank. On the other hand, volumetric tanks have appropriate dimensions and weight, especially when filled; the latter is especially critical for motors with built-in tanks (see above).

Recommended fuel

The type of gasoline recommended for use in an internal combustion engine outboard (see "Engine Type"). In fact, this paragraph indicates gasoline with the lowest octane rating that is allowed to be used in the engine; higher rates are allowed, lower ones are highly undesirable, if not outright prohibited.

The octane number is an indicator that determines the resistance of a particular brand of gasoline to detonation (self-ignition during compression in the cylinder). Detonation is a very undesirable phenomenon, because. it leads to an increase in engine loads simultaneously with a decrease in its power and an increase in the amount of harmful substances in the exhaust gases. And this phenomenon occurs in cases where the engine uses gasoline with lower octane numbers than those for which the unit is designed.

Automobile gasoline, which is also used for refueling boat engines, is marked with the AI or RON index; the first option is used in the characteristics of east european motors, the second — in foreign ones. However, in both indexes, the number after the letters means the octane number. The higher this number, the more demanding the engine is on fuel quality. Thus, for example, a unit under AI-92 will be able to work normally with AI-95, but AI-90 or AI-87 cannot be filled into it. "Record holders" for unpretentiousness today are engines that can work even on the AI-76; but they are a rare exception to the general rule.

Gear

The types of gears provided in the design of the outboard motor are, in fact, the direction in which it can move the boat.

Front. Standard gear for forward movement. Available in all outboard motors without exception, by definition.

— I'm neutral. In this case, neutral gear means the mode of operation of the motor, in which its shaft rotates idly, without transferring rotation to the propeller or water jet. Thanks to this, you can completely remove the thrust without turning off the motor and without lifting its “leg” out of the water. Considering that starting after a shutdown can be a rather troublesome procedure (especially if you have to do this often), and removing a spinning propeller from the water is generally undesirable — having a neutral gear is a very useful feature, and most gasoline engines (see "Engine type") have this mode. But in electric models (see ibid.), stopping and starting do not constitute a problem, so the role of the “neutral” in them is played by turning off the power and completely stopping the motor (and the neutral gear itself is not indicated in the specifications).

Back (reverse). A mode of operation in which the engine pulls the entire vessel backwards; in propeller motors, it is implemented by rotating the propeller in the opposite direction, in jet engines, by using reverse dampers. The reverse functi...on greatly facilitates both manoeuvring in narrow spaces and emergency braking on the water, so it is found in the vast majority of gasoline engines and almost all electric ones.

Note that electric motors (see “Engine type”) can have several gears of the same type — for example, 5 forward and 3 reverse. In such models, each "gear" is a separate switch position corresponding to a certain engine power. In gasoline engines, power control is carried out smoothly, using a throttle, so they have less than one gear of each type.

Weight

The total weight of the outboard motor. This parameter is indicated, usually, only for the unit itself, without taking into account the fuel in the tank and the tank itself (if it is external, see "Fuel tank"), as well as additional equipment. Motor weight data can be useful in order to estimate the overall balance of the boat and the change in its payload capacity.
Hidea HDF5HS often compared