Dark mode
USA
Catalog   /   Camping & Fishing   /   Fishing   /   Fish Finders

Comparison Lowrance Hook 3x vs Lowrance Hook 4x

Add to comparison
Lowrance Hook 3x
Lowrance Hook 4x
Lowrance Hook 3xLowrance Hook 4x
from $141.17 up to $160.16
Outdated Product
from $249.99 
Outdated Product
TOP sellers
Typefish finderfish finder
Specs
Scan depth244 m762 m
Number of beams of radiation22
Number of frequencies24
Radiation frequency83/200 kHz83/200/455/800 kHz
Emitter power180 W500 W
CHIRP Technology
Bottom scan
Digital data processing
Display specs
Display
3.5 "
320x240 px
colour
backlight
4.3 "
480x272 px
colour
backlight
Features
Functions
Sound alarm
Determination of the distance to the fish
Indication of symbols in the form of fish
Real time fish display
Shallow/shoal
Auto-change depth scale
Depth display range
Water temperature indicator
Sound alarm
Determination of the distance to the fish
Indication of symbols in the form of fish
Real time fish display
Shallow/shoal
Auto-change depth scale
Depth display range
Water temperature indicator
General
Key backlight
Dust and water protection
Power source12 V12 V
Dimensions94x47x143.4 mm96х56х168 mm
Added to E-Catalogmay 2016march 2016

Scan depth

the maximum depth at which the sonar locator (see "Type") is able to operate effectively — in other words, how deep underwater the device is able to "see".

It is worth choosing an echo sounder according to this parameter, taking into account the actual depths at which it is planned to be used. Of course, this does not place a certain margin, but within reasonable limits (15-20%, less). For example, it hardly makes sense to specially take a model with a scanning depth of 200 m for a lake with pits of 30-40 m — such devices are expensive, while there will simply be nowhere to realize their full potential, and a powerful signal can also scare away the fish. But for marine or oceanic applications, a depth of a kilometer or more may be required; the most advanced echo sounders are quite capable of providing it.

Number of frequencies

The number of individual radiation frequencies that can be operated by a device with echo sounding function (see "Type").

The features of the frequencies themselves are described in detail below, but here we note that different models may provide different options for distributing frequencies over individual beams (see "Number of radiation beams"). So, in some devices, each beam has its own frequency, in others, individual emitters can be switched, choosing the best option depending on the characteristics of the situation. In general, more frequencies indicate greater versatility, but it significantly affects the price.

Radiation frequency

The frequency(s) of radiation at which the device with the echo sounder function is capable of operating (see "Type").

The higher the frequency, the better the resolution and noise immunity of the device, the better it is suitable for working at high speeds, but the range and coverage suffer. Low-frequency (up to 200 kHz) sensors, on the contrary, "reach" deep and cover a wide angle, but are sensitive to interference and do not work well with fine terrain details and small objects. Accordingly, the first option is considered optimal for shallow depths and high-precision topographic measurements, while the second option is for deep water bodies, as well as for searching for fish and other tasks that require wide coverage.

Models with several radiation beams (see “Number of radiation beams”) often provide different frequencies for individual beams, which allows you to combine the advantages of different options in one device and compensate for their disadvantages.

Emitter power

The power output by the fishfinder (or fishfinder-chartplotter, see "Type") when operating.

The more powerful the emitter, the more “long-range” the device turns out, the greater the depth at which it can work normally (see above). However, do not forget that the practical capabilities of an echo sounder depend on a number of other parameters, ranging from operating frequencies and angles (see above) to the quality of the receiver and the features of signal processing algorithms. In addition, different manufacturers may indicate different types of power in the characteristics: in some cases it is peak (maximum power at the time of a single pulse), in others it is RMS (rms power calculated over a certain period of time and obtained below peak). Therefore, we can say that the role of this parameter is usually purely reference, and when choosing, it is worth focus on moments that are closer to practice (for example, the same scanning depth).

CHIRP Technology

Sonar support for CHIRP technology.

The meaning of this technology is to use the echo sounder at the same time several frequencies. In other words, each pulse consists of several signals, each at its own frequency. According to the creators, this allows you to improve image quality, increase detail (including at great depth and high speed) and at the same time reduce the level of noise and other interference on the screen compared to single-frequency sonars. However, models with CHIRP are noticeably more expensive.

Bottom scan

Echosounder support for special bottom scanning technologies.

"Viewing" the space under the bottom of the boat is a classic sonar mode and is supported by all models by definition. However, in normal mode, the sound beam propagates in the form of a cone, and the area of the bottom that falls under the beam has the shape of a circle. This degrades the accuracy and does not allow you to achieve a detailed image. Thus, many echo sounder manufacturers have developed special technologies to improve the performance of the instrument; Lowrance has DSI, Hummingbird has DI, Garmin has DownVü. The nuances of these technologies may differ, but the basic principle of operation is the same: the echo sounder beam narrows and goes not in a cone, but in a strip. Due to this, the resolution of the device is significantly increased; at shallow depths, such an echo sounder can “draw” even individual stalks of algae, making it possible to distinguish underwater thickets from schools of fish. Some models combine a narrow beam with a classic cone to further expand detection capabilities. However, such devices are expensive.

Digital data processing

The presence of a digital data processing system (DSP) in the design of the echo sounder.

Digital processing allows you to separate the received signal into extraneous noise and useful data. Of course, such a division is not 100% reliable; however, the level of noise in the filtered signal is still significantly reduced, and the screen receives a maximum of useful information and a minimum of extraneous information. The disadvantage of this function is traditional: echo sounders with DSP are somewhat more expensive than usual ones.

Display

— Screen size. Diagonal screen size in inches. The larger the screen, the more information can be displayed on it and the more detailed this information can be. On the other hand, this parameter noticeably affects the dimensions of the device, and large screens are expensive, especially since you need the appropriate resolution for normal image quality (see below).

Touch. The presence of a sensor in the design of the display. This feature allows you to control the device by touching the icons on the screen — similar to how it is done in smartphones and tablets. Touch control provides more options than the classic one, using buttons and switches, besides it is more visual — however, such devices are more expensive.

— Display resolution. Display size in dots (pixels) horizontally and vertically. The higher the resolution, the more detailed image the screen is able to produce, the smaller objects can be clearly displayed on it and the more comfortable viewing. At the same time, the specificity of echo sounders is such that too high resolution is not required even for high-end models: for example, modest by the standards of smartphones or tablets 640x480 with a 5" screen are considered quite sufficient even for an advanced device.

— Colour. The ability of a screen to display colours. In this case, the simplest division is used:

Monochrome.... Displays that display information only in shades of one colour. Theoretically, the main colour can be any, but in this case, the vast majority of monochrome screens are black and white. Their advantages are low cost and energy consumption, as well as good visibility in the sun; at the same time, such an image allows you to work with quite a variety of types of data, which is enough even for very advanced echo sounders (see "Type"). However, this variety is not as wide as for colour displays, as a result, for chartplotters (see ibid.), such an image is not suitable — if it is impossible to display different colours, some of the important information on the maps is lost.

Coloured. Screens capable of working with multiple colours. The variety of colours can be quite small, but the image still turns out to be more informative than black and white: different colours can indicate different depths on the map, water temperature changes, etc. Due to this, this type of display is found in all types of navigation devices (see above). Its main disadvantage can be called a higher cost than that of monochrome screens.

— Backlight. The screen has its own backlight system. This feature makes the display independent of ambient light and allows you to see the information on it even in complete darkness. At the same time, the backlight increases power consumption, which is important during long-term operation from an autonomous source (for example, a boat battery). Therefore, it can be turned off.
Lowrance Hook 3x often compared
Lowrance Hook 4x often compared