USA
Catalog   /   Computing   /   Components   /   Motherboards

Comparison MSI Z370 GAMING PLUS vs MSI Z370 KRAIT GAMING

Add to comparison
MSI Z370 GAMING PLUS
MSI Z370 KRAIT GAMING
MSI Z370 GAMING PLUSMSI Z370 KRAIT GAMING
Compare prices 2Compare prices 1
TOP sellers
Featuresgaming for overclockinggaming for overclocking
SocketIntel LGA 1151 v2Intel LGA 1151 v2
Form factorATXATX
Power phases6
VRM heatsink
LED lighting
Lighting syncMSI Mystic Light SyncMSI Mystic Light Sync
Size (HxW)305x244 mm305x244 mm
Chipset
ChipsetIntel Z370Intel Z370
BIOSAmiAmi
UEFI BIOS
RAM
DDR44 slot(s)4 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency4000 MHz4000 MHz
Max. memory64 GB64 GB
XMP
Drive interface
SATA 3 (6Gbps)66
M.2 connector12
M.21xSATA/PCI-E 4x2xSATA/PCI-E 4x
Integrated RAID controller
 /RAID 0, RAID 1, RAID 5, RAID 10/
 /RAID 0, RAID 1, RAID 5, RAID 10/
Expansion slots
1x PCI-E slots43
PCI-E 16x slots23
PCI Modes16x/4x16x/0x/4x, 8x/8x/4x
PCI Express3.03.0
CrossFire (AMD)
SLI (NVIDIA)
Steel PCI-E connectors
Internal connections
USB 2.022
USB 3.2 gen122
Video outputs
D-Sub output (VGA)
DVI outputDVI-DDVI-D
HDMI output
DisplayPort
Integrated audio
AudiochipRealtek ALC892Realtek ALC1220
Sound (channels)7.17.1
Optical S/P-DIF
Network interfaces
LAN (RJ-45)1 Gbps1 Gbps
LAN ports11
LAN controllerIntel I219-VIntel I219-V
External connections
USB 2.022
USB 3.2 gen144
USB 3.2 gen21
USB C 3.2 gen21
PS/211
Power connectors
Main power socket24 pin24 pin
CPU power8 pin8 pin
Fan power connectors66
Added to E-Catalogoctober 2017october 2017

Power phases

The number of processor power phases provided on the motherboard.

Very simplistically, phases can be described as electronic blocks of a special design, through which power is supplied to the processor. The task of such blocks is to optimize this power, in particular, to minimize power surges when the load on the processor changes. In general, the more phases, the lower the load on each of them, the more stable the power supply and the more durable the electronics of the board. And the more powerful the CPU and the more cores it has, the more phases it needs; this number increases even more if the processor is planned to be overclocked. For example, for a conventional quad-core chip, only four phases are often enough, and for an overclocked one, at least eight may be needed. It is because of this that powerful processors can have problems when used on inexpensive low-phase motherboards.

Detailed recommendations on choosing the number of phases for specific CPU series and models can be found in special sources (including the documentation for CPU itself). Here we note that with numerous phases on the motherboard (more than 8), some of them can be virtual. To do this, real electronic blocks are supplemented with doublers or even triplers, which, formally, increases the number of phases: for example, 12 claimed phases can represent 6 physical blocks with doublers. However, virtual phases are much inferior to real ones in terms of capabilities — in fact, t...hey are just additions that slightly improve the characteristics of real phases. So, let's say, in our example, it is more correct to speak not about twelve, but only about six (though improved) phases. These nuances must be specified when choosing a motherboard.

M.2 connector

The number of M.2 connectors provided in the design of the motherboard. There are motherboards for 1 M.2 connector, for 2 connectors, for 3 connectors or more.

The M.2 connector is designed to connect advanced internal devices in a miniature form factor — in particular, high-speed SSD drives, as well as expansion cards like Wi-Fi and Bluetooth modules. However, connectors designed to connect only peripherals (Key E) are not included in this number. Nowadays, this is one of the most modern and advanced ways to connect components. But note that different interfaces can be implemented through this connector — SATA or PCI-E, and not necessarily both at once. See "M.2 interface" for details; here we note that SATA has a low speed and is used mainly for low-cost drives, while PCI-E is used for advanced solid-state modules and is also suitable for other types of internal peripherals.

Accordingly, the number of M.2 is the number of components of this format that can be simultaneously connected to the motherboard. At the same time, many modern boards, especially mid-range and top-end ones, are equipped with two or more M.2 connectors, and moreover, with PCI-E support.

M.2

Electrical (logical) interfaces implemented through physical M.2 connectors on the motherboard.

See above for more details on such connectors. Here we note that they can work with two types of interfaces:
  • SATA is a standard originally created for hard drives. M.2 usually supports the newest version, SATA 3; however, even it is noticeably inferior to PCI-E in terms of speed (600 MB / s) and functionality (only drives);
  • PCI-E is the most common modern interface for connecting internal peripherals (otherwise NVMe). Suitable for both expansion cards (such as wireless adapters) and drives, while PCI-E speeds allow you to fully realize the potential of modern SSDs. The maximum communication speed depends on the version of this interface and on the number of lines. In modern M.2 connectors, you can find PCI-E versions 3.0 and 4.0, with speeds of about 1 GB / s and 2 GB / s per lane, respectively; and the number of lanes can be 1, 2 or 4 (PCI-E 1x, 2x and 4x respectively)
Specifically, the M.2 interface in the characteristics of motherboards is indicated by the number of connectors themselves and by the type of interfaces provided for in each of them. For example, the entry "3xSATA / PCI-E 4x" means three connectors that can work both in SATA format and in PCI-E 4x format; and the designation "1xSATA / PCI-E 4x, 1xPCI-E 2x" means two connectors, one of which works as SATA or PCI-E 4x, and the second — only as PCI-E 2x.

1x PCI-E slots

Number of PCI-E (PCI-Express) 1x slots installed on the motherboard. There are motherboards for 1 PCI-E 1x slot, 2 PCI-E 1x slots, 3 PCI-E 1x ports and even more.

The PCI Express bus is used to connect various expansion cards — network and sound cards, video adapters, TV tuners and even SSD drives. The number in the name indicates the number of PCI-E lines (data transfer channels) supported by this slot; the more lines, the higher the throughput. Accordingly, PCI-E 1x is the basic, slowest version of this interface. The data transfer rate for such slots depends on the PCI-E version (see "PCI Express Support"): in particular, it is slightly less than 1 GB / s for version 3.0 and slightly less than 2 GB / s for 4.0.

Separately, we note that the general rule for PCI-E is as follows: the board must be connected to a slot with the same or more lines. Thus, only single-lane boards will be guaranteed to be compatible with PCI-E 1x.

PCI-E 16x slots

Number of PCI-E (PCI-Express) 16x slots installed on the motherboard.

The PCI Express bus is used to connect various expansion cards — network and sound cards, video adapters, TV tuners and even SSD drives. The number in the name indicates the number of PCI-E lines (data transfer channels) supported by this slot; the more lines, the higher the throughput. 16 lanes is the largest number found in modern PCI Express slots and cards (more is technically possible, but the connectors would be too bulky). Accordingly, these slots are the fastest: they have a data transfer rate of 16 GB / s for PCI-E 3.0 and 32 GB / s for version 4.0 (for more information about the versions, see "PCI Express Support").

Separately, we note that it is PCI-E 16x that is considered the optimal connector for connecting video cards. However, when choosing a motherboard with several such slots, it is worth considering the PCI-E modes supported by it (see below). In addition, we recall that the PCI Express interface allows you to connect boards with a smaller number of lines to connectors with numerous lines. Thus, PCI-E 16x will fit any PCI Express card.

It is also worth mentioning that in the design of modern "motherboards" there are slots of increased sizes — in particular, PCI-E 4x, corresponding in size to PCI-E 16x. However, the type of PCI-E slots in our catalog is indicated by the actual throughput; so only connectors that support 16x speed are considered as PCI-E 16x.

PCI Modes

Operating modes of PCI-E 16x slots supported by the motherboard.

For more information about this interface, see above, and information about the modes is indicated if there are several PCI-E 16x slots on the board. This data specifies at what speed these slots can operate when expansion cards are connected to them at the same time, how many lines each of them can use. The fact is that the total number of PCI-Express lanes on any motherboard is limited, and they are usually not enough for the simultaneous operation of all 16-channel slots at full capacity. Accordingly, when working simultaneously, the speed inevitably has to be limited: for example, recording 16x / 4x / 4x means that the motherboard has three 16-channel slots, but if three video cards are connected to them at once, then the second and third slots will be able to give speed only to PCI-E 4x level. Accordingly, for a different number of slots and the number of digits will be appropriate. There are also boards with several modes — for example, 16x/0x/4 and 8x/8x/4x (0x means that the slot becomes inoperable altogether).

You have to pay attention to this parameter mainly when installing several video cards at the same time: in some cases (for example, when using SLI technology), for correct operation of video adapters, they must be connected to slots at the same speed.

SLI (NVIDIA)

Motherboard support for NVIDIA SLI technology.

This technology allows you to connect several individual NVIDIA graphics cards to your PC at once and combine their computing power, respectively increasing the system's graphics performance in specific tasks. Accordingly, this feature means that the "motherboard" is equipped with at least two slots for video cards — PCI-E 16x; in general, SLI allows up to 4 separate adapters to be connected.

Such functionality is especially important for demanding games and "heavy" tasks like 3D rendering. However, note that in order to use several video cards, this possibility must also be provided in the application running on the computer. So in some cases, one powerful video adapter is more preferable than several relatively simple ones with the same total amount of VRAM.

A similar technology from AMD is called Crossfire (see above). The main difference between these technologies is that SLI is more demanding on compatibility: it only works on video cards with the same GPU models (although other parameters — the manufacturer, the amount and frequency of video memory, etc. — may be different). In addition, video adapters in an SLI bundle must be connected with a cable or a bridge (the only exceptions are some low-cost models); and support for this technology is somewhat more expensive than in the case of Crossfire, so it is less common in motherboards (and mostly together wi...th the solution from AMD).

D-Sub output (VGA)

The motherboard has its own D-Sub (VGA) output.

Such an output is intended for transmitting video from an integrated graphics card (see above) or a processor with integrated graphics (we emphasize that it is impossible to output a signal from a discrete graphics card through the motherboard chipset). As for VGA specifically, it is an analogue standard originally created for CRT monitors. It does not differ in image quality, is practically not suitable for resolutions above 1280x1024 and does not provide sound transmission, and therefore is generally considered obsolete. However, this type of input continues to be used in some monitors, TVs, projectors, etc.; so among motherboards you can find models with such outputs.

HDMI output

The motherboard has its own HDMI output.

Such an output is intended for transmitting video from an integrated graphics card (see above) or a processor with integrated graphics (we emphasize that it is impossible to output a signal from a discrete graphics card through the motherboard chipset). As for HDMI specifically, it is a combined digital video/audio interface specifically designed to work with HD resolutions and multi-channel audio. Today it is the most common of these interfaces, HDMI support is almost mandatory for video devices that are compatible with HD standards.

The specific capabilities of HDMI vary by version (see below for more details), but in general they are quite impressive — even in the earliest (current today) HDMI v.1.4, the maximum resolution is 4K, and in newer standards it reaches 10K. So in motherboards, the quality of the video transmitted through such an output is often limited not by the interface capabilities, but by the graphics performance of the system.
MSI Z370 GAMING PLUS often compared
MSI Z370 KRAIT GAMING often compared