Dark mode
USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison Xiaomi Mi 5s 64 GB / 3 GB vs Xiaomi Mi 5 32 GB / 3 GB

Add to comparison
Xiaomi Mi 5s 64 GB / 3 GB
Xiaomi Mi 5 32 GB / 3 GB
Xiaomi Mi 5s 64 GB / 3 GBXiaomi Mi 5 32 GB / 3 GB
from $278.00 up to $399.96
Outdated Product
from $231.00 up to $339.96
Outdated Product
TOP sellers
Main
Up to 4 GB of RAM. 16 MP main camera with quad-axis optical stabilizer. Front camera with UltraPixel matrix. USB Type-C connector. Wi-Fi ac. Bluetooth 4.2. Fingerprint scanner.
Available in 3 versions: 32 GB (1.8 GHz processor, 3 GB RAM), 64 GB (2.15 GHz processor, 3 GB RAM), 128 GB (2.15 GHz processor, 4 GB RAM, ceramic back) ). There is no memory card slot.
Display
Main display
5.15 "
1920x1080 (16:9)
428 ppi
IPS
5.15 "
1920x1080 (16:9)
428 ppi
IPS
Display-to-body ratio71 %73 %
Hardware
Operating systemAndroid 6.0Android 6.0
CPU modelQualcomm MSM8996 Snapdragon 821Qualcomm MSM8996 Snapdragon 820
CPU frequency2.2 GHz1.8 GHz
CPU cores44
GPUAdreno 530Adreno 530
RAM3 GB3 GB
Memory storage64 GB32 GB
Memory card slotabsentabsent
Test results
AnTuTu Benchmark143 000 score(s)136 000 score(s)
Geekbench3934 score(s)3698 score(s)
3DMark Gamer's Benchmark2857 score(s)
Main camera
Main lens
12 MP
16 MP
Full HD (1080p)30 fps30 fps
4K30 fps30 fps
Slow motion (slow-mo)120 fps120 fps
Flash
Front camera
Main selfie lens4 MP4 MP
Connections and communication
Cellular technology
4G (LTE)
CDMA
4G (LTE)
CDMA
SIM card typenano-SIMnano-SIM
SIM slots2 SIM2 SIM
Connectivity technology
Wi-Fi 5 (802.11ac)
Bluetooth v 4.2
NFC
 
Wi-Fi 5 (802.11ac)
Bluetooth v 4.2
NFC
IrDA
Inputs & outputs
USB C
mini-jack (3.5 mm)
USB C
mini-jack (3.5 mm)
Features and navigation
Features
front fingerprint scanner
noise cancellation
gyroscope
front fingerprint scanner
noise cancellation
gyroscope
Navigation
aGPS
GPS module
GLONASS
digital compass
aGPS
GPS module
GLONASS
digital compass
Power supply
Battery capacity3200 mAh3000 mAh
Fast chargingQuick Charge 3.0Quick Charge 3.0
General
Bezel/back cover materialmetal/metalmetal/glass
Dimensions (HxWxD)145.6x70.3x8.3 mm144.6x69.2x7.3 mm
Weight145 g129 g
Color
Added to E-Catalogseptember 2016september 2016

Display-to-body ratio

The ratio of the screen area to the total front panel area of the phone. Simply put, this spec describes how much of the front panel is occupied by the screen; the rest is the bezels.

This indicator is given exclusively for smartphones with touch screens — it is for them that it is most relevant. The larger the percentage of the body is occupied by the screen, the thinner are the bezels, the neater the smartphone looks and the more convenient it is to work with it with one hand. As for specific numbers, the average values are 80 – 85 %, the higher values allow us to talk about a thin bezel, and more than 90 % — about a “bezel less” design.

Separately, we note that this parameter has nothing to do with the aspect ratio of the screen. The aspect ratio describes only the display itself — its proportions, the ratio between the larger and smaller side of the rectangle.

CPU model

The most popular nowadays are chips from Qualcomm and MediaTek, CPUs from Unisoc are slightly less common. Qualcomm has several processors of each series, namely Snapdragon 778G, Snapdragon 7 Gen 1, Snapdragon 7+ Gen 2, Snapdragon 7s Gen 2, Snapdragon 7 Gen 3, Snapdragon 7+ Gen 3, Snapdragon 865, Snapdragon 870, Snapdragon 888, Snapdragon 8 Gen 1, Snapdragon 8+ Gen 1, Snapdragon 8 Gen 2, Snapdragon 8 Gen 3, Snapdragon 8s Gen 3. And Mediatek has a low cost series MediaTek Helio P and a line of advanced chipsets MediaTek Dimensity (Dimensity 1000, Dimensity 7000, Dimensity 8000, Dimensity 9000).

Knowing the name of the CPU model installed in the smartphone, you can find detailed data on a particula...r CPU and evaluate its level and general capabilities. This is especially true in light of the fact that these capabilities depend not only on the number of cores and clock speed, but also on the specific nuances of the design.

CPU frequency

The clock frequency of the CPU that the device is equipped with. For multi-core processors, which are standard in modern smartphones, the frequency of each individual core is implied; and if the processor has cores with different frequencies (see "Number of cores") — usually, the maximum indicator is given.

In general, high performance smartphones have high frequency of the processor. However, note that this parameter itself is not directly related to the capabilities of the CPU: many other features of the chip affect the actual performance, and often a low cost solution with a higher clock speed turns out to be less performant than an expensive one, and at the same time, presumably, more "slow" processor. In addition, the overall performance of the system directly depends on a whole set of other factors — primarily the amount of RAM. Therefore, when evaluating a smartphone, it is worth focus not so much on the frequency of the processor, but on the general specs of the system and visual indicators like the results in tests (see below).

Memory storage

The volume of storage installed in the phone.

This volume directly determines how much data can be stored on the phone without using removable memory cards. This indicator is especially important for models that don't have memory card slots. However, even if memory cards are supported, built-in storage is still preferable: at least it works faster, and it usually has fewer restrictions on its use (in particular, most smartphones allow you to install applications only on storage).

As for specific volumes, the actual minimum for a modern smartphone is 32 GB; less “capacious” devices are becoming increasingly rare these days. 64 GB is considered a comfortable minimum, 128 GB is considered average indicator, 256 GB - above average. Some high-end devices are equipped with 512 GB and even 1 TB< /a>.

We also note that the actual amount of memory available to the user will inevitably be somewhat less than the total, since part of the drive is occupied by operating system files.

Test results

The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.

AnTuTu Benchmark

The result shown by a device when undergoing a performance test (benchmark) in AnTuTu Benchmark.

AnTuTu Benchmark is a comprehensive test designed specifically for mobile devices, primarily smartphones and tablets. It evaluates the efficiency of the processor, memory, graphics, and input/output systems, providing a clear impression of the system's capabilities. The higher the performance, the more points are awarded. Smartphones that score over 900K points are considered high-performance according to the AnTuTu ranking.

Like any benchmark, this test does not provide absolute precision: the same device can show different results, usually with deviations within 5-7%. These deviations depend on various factors unrelated to the system itself, such as the device's load from third-party programs and the ambient temperature during testing. Therefore, significant differences between two models can only be noted when the gap in their scores exceeds this margin of error.

Geekbench

The result shown by a device when undergoing a performance test (benchmark) in Geekbench.

Geekbench is a specialized benchmark designed for processors. Since version 4.0, it also includes tests for graphics processors, and by the end of 2019, version 5 of the benchmark was released. Typically, the specifications for portable gadgets include data specifically for the CPU. During testing, Geekbench simulates workloads that occur during real-world tasks, evaluating both single-core performance and the efficiency of multi-core operations. This provides a solid overview of the processor's capabilities in everyday use. Additionally, Geekbench is cross-platform, allowing for comparisons between the CPUs of different devices (smartphones, tablets, laptops, PCs). In reference materials, only the multi-core test results for the processor are usually provided.

3DMark Gamer's Benchmark

The result shown by the device when passing the 3DMark Gamer's Benchmark performance test.

3DMark is a series of benchmarks originally designed to test the graphics performance of a device; later, these tests were supplemented by checking the capabilities of the processor. Testing is carried out primarily in terms of performance in games (in fact, the benchmark itself is described as “a game without the ability to influence the process”), however, given that modern games can have very high requirements, 3DMark is a fairly visual tool for assessing the overall performance of the system . And since the latest versions of the test are made cross-platform, it also makes it possible to compare devices under different operating systems and even different classes (for example, smartphones with tablets). The more points this or that model received on this test, the more performant it is.

It is worth noting that the results of any benchmark are usually quite approximate, because. they depend on many factors that are not directly related to the system — from the load of the device with third-party programs and ending with the air temperature during testing. The error due to these factors is usually about 5 – 7 %; therefore, it is possible to speak of a significant difference between the two models only if the difference in their indicators goes beyond those 5 – 7%.

Main lens

Specifications of the main lens of the rear camera installed in the phone. In models with several lenses (see “Number of lenses”), the main one is responsible for basic shooting capabilities and does not have a pronounced specialization (wide-angle, telephoto, etc.). Four main parameters can be indicated here: resolution, aperture ( high aperture optics are quite common), focal length, additional sensor data.

Resolution(in megapixels, MP)
Resolution of the sensor used for the main lens. Budget options are equipped with a module 8 MP and below, many models have 12 MP camera / 13 MP, also recently a trend towards increasing megapixels has been popular. Often in smartphones you can find the main photomodule at 48 MP, 50 MP< /a>, 64 MP and even 108 MP .

The maximum resolution of the resulting image directly depends on the resolution of the sensor; and the high resolution of the "picture", in turn, allows you to better display fine details. On the other hand, an increase in the number of megapixels in itself can lead to a deterioration in the overall image quality - due to the smaller size of each individual pixel, the noise level increases. As a result,...the direct resolution of the camera has little effect on the quality of the shooting - more depends on the physical size of the matrix, the features of the optics and various design tricks used by the manufacturer.

Aperture
Aperture describes the ability of a lens to transmit light. It is written as a fractional number, for example f/1.9. Moreover, the larger the number in the denominator, the lower the aperture ratio, the less light passes through the optics, all other things being equal. For example, an f/2.6 lens will be “darker” than f/1.9.

High aperture gives the camera a number of advantages. First, it improves the quality of shooting in low light. Secondly, it's possible to shoot at low shutter speeds, minimizing the effect of "stirring" and blurring of moving objects in the frame. Thirdly, with fast optics it is easier to achieve a beautiful background blur ("bokeh") — for example, when shooting portraits.

Focal length(in millimetres)
The focal length is a distance between the sensor and the centre of the lens (focused to infinity), at which the most clear image is obtained on the matrix. However, for smartphones, the specifications indicate not the actual, but the so-called equivalent focal length — a conditional indicator recalculated using special formulas. This indicator can be used to evaluate and compare cameras with different sensor sizes (the actual focal length cannot be used for this, since with a different sensor size the same real focal length will correspond to different viewing angles). (It is also worth saying that the equivalent focal length can be noticeably larger than the thickness of the case — there is nothing unusual in this, since this is a conditional, and not a real indicator).

Anyway, the field of view and the degree of magnification directly depend on the equivalent focal length: a larger focal length gives a smaller field of view and a larger size of individual objects that fall into the frame, and a decrease in this distance, in turn, allows you to cover more space. In most modern smartphones, the focal length of the main camera ranges from 13 to 35 mm; if compared with the optics of traditional cameras, then lenses with equivalent focal length up to 25 mm can be attributed to wide-angle lenses, more than 25 mm — to universal models “with a bias towards wide-angle shooting”. Such values are chosen due the fact that smartphones are often used for shooting in cramped conditions, when a fairly large space needs to fit into the frame at a small distance. Enlargement of the picture, if necessary, is most often carried out digitally — due to the reserve of megapixels on the sensor; but there are also models with optical zoom (see below) — for them, not one value is given, but the entire working range of the equivalent focal length (recall, optical zoom is carried out by changing the focal length).

Field of view(in degrees). It characterizes the size of the area covered by the lens, as well as the size of individual objects "seen" by the camera. The larger this field, the more of the scene gets into the frame, but the smaller the individual objects in the image are. The field of view is directly related to the focal length (see above): increasing this distance narrows the field of view of the lens, and vice versa.

Note that this parameter is generally considered important for professional use of the camera rather than for amateur photography. Therefore, viewing angle data is given mainly for smartphones equipped with advanced cameras — including in order to emphasize the high class of cameras. As for specific values, for the main lens they usually are in the range from 70° to 82° — this corresponds to the general specifics of such optics (universal shooting with an emphasis on general scenes and extensive coverage at short distances).

Additional Sensor Data
Additional information regarding the sensor installed in the main lens. This item can specify both the size (in inches) and the sensor model, and sometimes both parameters at once. Anyway, such data is provided only if the device is equipped with a high-end sensor. With the model, everything is quite simple: knowing the name of the sensor, you can find detailed data on it. The size is worth considering a little more.

The size of the sensor is traditionally indicated in fractional parts of an inch — accordingly, for example, a 1/2.3" sensor will be larger than 1/2.6". Larger sensors are considered more advanced, as they provide better image quality at the same resolution. The logic here is simple - due to the large sensor area, each individual pixel is also larger and gets more light, which improves sensitivity and reduces noise. Of course, the actual image quality will also depend on a number of other parameters, but in general, a larger sensor size usually means a more advanced camera. In advanced photo flagships, you can find matrices with a physical size of 1”, which is comparable to image sensors used in top compact cameras with fixed lenses.
Xiaomi Mi 5s often compared
Xiaomi Mi 5 often compared