Display-to-body ratio
The ratio of the screen area to the total front panel area of the phone. Simply put, this spec describes how much of the front panel is occupied by the screen; the rest is the bezels.
This indicator is given exclusively for smartphones with touch screens — it is for them that it is most relevant. The larger the percentage of the body is occupied by the screen, the thinner are the bezels, the neater the smartphone looks and the more convenient it is to work with it with one hand. As for specific numbers, the average values are 80 – 85 %, the higher values allow us to talk about a
thin bezel, and more than 90 % — about a
“bezel less” design.
Separately, we note that this parameter has nothing to do with the aspect ratio of the screen. The aspect ratio describes only the display itself — its proportions, the ratio between the larger and smaller side of the rectangle.
CPU model
The most popular nowadays are chips from
Qualcomm and
MediaTek, CPUs from
Unisoc are slightly less common. Qualcomm has several processors of each series, namely
Snapdragon 778G,
Snapdragon 7 Gen 1,
Snapdragon 7+ Gen 2,
Snapdragon 7s Gen 2,
Snapdragon 7 Gen 3,
Snapdragon 7+ Gen 3,
Snapdragon 865,
Snapdragon 870,
Snapdragon 888,
Snapdragon 8 Gen 1,
Snapdragon 8+ Gen 1,
Snapdragon 8 Gen 2,
Snapdragon 8 Gen 3,
Snapdragon 8s Gen 3. And Mediatek has a low cost series
MediaTek Helio P and a line of advanced chipsets
MediaTek Dimensity (
Dimensity 1000,
Dimensity 7000,
Dimensity 8000,
Dimensity 9000).
Knowing the name of the CPU model installed in the smartphone, you can find detailed data on a particula
...r CPU and evaluate its level and general capabilities. This is especially true in light of the fact that these capabilities depend not only on the number of cores and clock speed, but also on the specific nuances of the design.CPU frequency
The clock frequency of the CPU that the device is equipped with. For multi-core processors, which are standard in modern smartphones, the frequency of each individual core is implied; and if the processor has cores with different frequencies (see "Number of cores") — usually, the maximum indicator is given.
In general,
high performance smartphones have high frequency of the processor. However, note that this parameter itself is not directly related to the capabilities of the CPU: many other features of the chip affect the actual performance, and often a low cost solution with a higher clock speed turns out to be less performant than an expensive one, and at the same time, presumably, more "slow" processor. In addition, the overall performance of the system directly depends on a whole set of other factors — primarily the amount of RAM. Therefore, when evaluating a smartphone, it is worth focus not so much on the frequency of the processor, but on the general specs of the system and visual indicators like the results in tests (see below).
CPU cores
The number of cores in the processor of a mobile phone.
The core in this specific case refers to the part of the processor that executes one thread of commands. Accordingly, the presence of multiple cores allows you to work with multiple threads simultaneously, which has a positive effect on performance. At the same time multi-core CPUs are now found even in the most inexpensive modern smartphones — even
chips with 8 cores are not uncommon among them, not to mention simpler
quad -core and
six-core solutions. And some modern processors can have up to
10 cores.
Theoretically, more cores can improve processor efficiency. However, in fact, the performance of the CPU (and the smartphone itself, eventually) depends on many additional factors. Thus the number of cores is purely a reference parameter. For example, a high-end quad-core processor may be much more performant than an inexpensive eight-core one. So you really should focus on overall level of performance and the results shown in various tests (see below)
It is also worth mentioning that individual cores of mobile CPUs may vary in clock speed, performance and power consumption. The classic version is 8 cores working according to the “4 + 4” scheme: 4 relatively “weak” and power efficient cores are responsible for simple tasks like Internet surfing, and ano
...ther 4 – more powerful ones - turn on when high performance is required (for example, in games with advanced graphics). This scheme of work allows you to achieve the optimal balance between performance and energy efficiency of CPU.GPU
The model of the GPU used in the mobile phone.
This module is responsible for all tasks related to graphics; accordingly, its specs directly affect the efficiency of processing a particular picture. This is especially noticeable in the example of modern 3D games. Therefore, the presence of a powerful video adapter is especially important for
gaming smartphones. And knowing the model of the GPU, you can find detailed data about it and evaluate its capabilities.
RAM
The parameter determines the overall performance of the smartphone: the more RAM, the faster the device works and the better it copes with an abundance of tasks and / or resource-intensive applications (ceteris paribus). This is even more true in light of the fact that large amounts of "RAM" are usually combined with powerful advanced processors. However, only devices with identical operating systems can be directly compared with each other, and in the case of Android, with the same versions and editions of this OS (for more on all this, see "Operating system"). This is due to the fact that different operating systems and even different versions of the same OS can differ markedly in terms of RAM requirements. For example, iOS, thanks to good optimization for specific devices, is able to work efficiently with
3 GB of RAM. For modern versions of Android in the regular edition (not Go Edition), the mentioned 3 GB is actually the required minimum. Under such an OS, it is better to have at least
4 GB or
6 GB of RAM. In high-end devices with powerful electronic "stuffing" you can also find more impressive numbers -
8 GB or even
12 GB or more.
Memory storage
The volume of storage installed in the phone.
This volume directly determines how much data can be stored on the phone without using removable memory cards. This indicator is especially important for models that
don't have memory card slots. However, even if memory cards are supported, built-in storage is still preferable: at least it works faster, and it usually has fewer restrictions on its use (in particular, most smartphones allow you to install applications only on storage).
As for specific volumes, the actual minimum for a modern smartphone is
32 GB; less “capacious” devices are becoming increasingly rare these days.
64 GB is considered a comfortable minimum,
128 GB is considered average indicator,
256 GB - above average. Some high-end devices are equipped with
512 GB and even
1 TB< /a>.
We also note that the actual amount of memory available to the user will inevitably be somewhat less than the total, since part of the drive is occupied by operating system files.Test results
The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.
AnTuTu Benchmark
The result shown by a device when undergoing a performance test (benchmark) in AnTuTu Benchmark.
AnTuTu Benchmark is a comprehensive test designed specifically for mobile devices, primarily smartphones and tablets. It evaluates the efficiency of the processor, memory, graphics, and input/output systems, providing a clear impression of the system's capabilities. The higher the performance, the more points are awarded. Smartphones that score over 900K points are considered
high-performance according to the AnTuTu ranking.
Like any benchmark, this test does not provide absolute precision: the same device can show different results, usually with deviations within 5-7%. These deviations depend on various factors unrelated to the system itself, such as the device's load from third-party programs and the ambient temperature during testing. Therefore, significant differences between two models can only be noted when the gap in their scores exceeds this margin of error.