Graphics card model
The main manufacturers of video cards nowadays are
AMD,
NVIDIA and Intel, and each has its own specifics. NVIDIA produces primarily discrete solutions; Among the most common are
the GeForce MX1xx,
GeForce MX3xx,
GeForce GTX 10xx series (in particular
GTX 1050,
GTX 1050 Ti and
GTX 1060),
GeForce GTX 16xx,
GeForce RTX 20xx,
GeForce RTX 30xx(
GeForce RTX 3060,
GeForce RTX 3060 Ti,
GeForce RTX 3070,
GeForce RTX 3070 Ti,
GeForce RTX 3080,
GeForce RTX 3080 Ti, GeForce RTX 3090,
GeForce RTX 3090 Ti),
GeForce RTX 4060 , GeForce RTX 4060 Ti,
GeForce RTX 4070,
GeForce RTX 4070 SUPER,
GeForce RTX 4070 Ti,
GeForce RTX 4070 Ti SUPER,
Ge Force RTX 4080,
GeForce RTX 4080 SUPER,
GeForce RTX 4090 and separate
Quadro series. AMD offers both discrete and integrated graphics - including the popular
Radeon RX 500,
Radeon RX 5000,
Radeon RX 6000,
Radeon RX 7000 and
AMD Radeon Pro series. And Intel deals exclusively with modules integrated into processors of its own production - these can be HD Graphics, UHD Graphics and Iris.
Note that many configurations with discrete graphics also have an integrated graphics module; in such cases, the name of the discrete video card is indicated as more advanced.
Graphics memory
The amount of native memory provided by the discrete graphics card (see "Graphics card type").
The larger this volume, the more powerful and advanced the video adapter is, the better it handles with complex tasks and, accordingly, the more expensive it is. Nowadays,
2 GB and
3 GB are considered quite modest,
4 GB are not bad,
6 GB and
8 GB are very solid, and more than 8 GB means that we have a specialized PC built for maximum graphics performance.
Memory type
The type of graphics memory used by the discrete graphics card (see "Video Card Type").
In most of these adapters, GDDR graphics memory is installed — a kind of regular DDR "RAM", optimized for use with graphics tasks. This memory is available on the market in several versions; in addition, there are other varieties. Here is a more detailed description of the different options:
— GDDR3. At one time — a fairly common type of graphic memory; today, however, it is considered obsolete and is not used in new PCs.
— GDDR5. The most popular (for 2020) type of GDDR graphic memory. At a reasonable cost, it provides good performance, due to which it is found in computers of different price categories.
— GDDR5X. Modification of the above-mentioned GDDR5, characterized by a 2-fold increased throughput. Accordingly, the performance of such memory (with the same volumes) is noticeably higher; on the other hand, such modules are expensive.
— GDDR6. The newest of the GDDR standards for 2020 — the first video cards based on this type of memory were introduced in 2018. It differs from its immediate predecessor — GDDR5X — in both increased bandwidth and lower operating voltage, which provides both increased efficiency and reduced power consumption. It is also worth noting that GDDR6 was developed with specific applications in mind, such as VR or work with resolutions above 4K UHD.
— HBM2. The original HBM is a type of RAM d...esigned to maximize the speed of data exchange; HBM2 is the second version of this technology, in which the bandwidth compared to the original HBM has been doubled. Such a memory is fundamentally different from DDR in terms of device — in particular, the memory cells in it are placed in layers and allow simultaneous access. Thanks to this, HBM is several times faster than the fastest versions of GDDR, which makes this technology perfect for high workloads such as processing UltraHD graphics and virtual reality. At the same time, the clock frequency of such modules is low and, accordingly, power consumption and heat dissipation are small. The disadvantage of this option is traditional — the high price.
— DDR3. Memory that does not have a specialization for graphics — in other words, the same DDR3 that is used in RAM sticks (see "Memory Type" above). In the case of video cards, such solutions are completely obsolete and are almost never used nowadays.
3DMark
The result shown by the PC graphics card in the 3DMark test (benchmark).
3DMark is a specialized test designed primarily to test the performance and stability of a graphics card in demanding games. The verification is carried out by running 3D videos created on various game engines using various technologies. The final result is evaluated both in terms of frame rate and in conditional points; in this paragraph, just the number of points is given. The higher it is, the more powerful and performant the graphics card is.
Note that 3DMark testing can be carried out for any type of graphics (see "Graphics card type"). At the same time (as of 2020) in integrated solutions, the final result rarely exceeds 1000 points; the most modest indicator for discrete adapters is about 1700 points; and in some high-end graphics cards, it can exceed 10,000 points.
Passmark G3D Mark
The result shown by the PC graphics card in the test (benchmark) Passmark G3D Mark.
Passmark G3D Mark is a comprehensive test to check the performance of a graphics card in various modes. Traditionally for such tests results are displayed in points, more points mean (proportionately) higher computing power. However, note that the graphics card is tested in different modes, and the final score is derived based on several results in specialized tests. Therefore, adapters with a similar overall result may differ slightly in actual performance in certain specific formats of operation. So if a PC is purchased for professional work with graphics, and high efficiency in some specialized tasks is critical, it will not hurt to clarify these nuances separately.
Note that with the help of Passmark G3D Mark, nowadays, all types of graphics adapters are tested (see "Graphics card type"). At the same time, for integrated solutions, a result of more than 1200 points is considered very good, and in discrete models this figure can vary from 2200 – 2300 points to 20,000 points or more.
Connectors
In most desktop PCs, this assortment is determined both by connectors on the "motherboard" and on a discrete graphics card, among which
VGA,
DVI,
HDMI output(there are models where
HDMI 2 pcs),
HDMI input,
DisplayPort,
miniDisplayPort. More details about them.
— VGA. He's D-Sub. Analogue video output with maximum resolution up to 1280x1024 and no audio support. It is rarely installed in modern devices, but it can be useful for connecting certain models of projectors and TVs, as well as outdated video equipment.
— DVI. Modern PCs can be equipped with both pure digital DVI-D and hybrid DVI-I; the latter also allows analogue connection, including work with VGA-devices through an adapter, and in analogue format has a resolution of 1280x1024. In digital DVI, this parameter can reach 1920x1200 in single-link mode (single link) and 2560x1600 in dual-link mode. The presence of a dual-channel mode must be specified separately.
— HDMI output. Digital output originally designed for HD content — high-definition video and multi-channel audio. The HDMI interface is almost mandatory for modern HD multimedia technology, and it is also extremely popular in computer monitors — so the presence of such an output on a PC provides ve
...ry extensive features for connecting external screens and even high-end audio devices. Some devices may even have 2 HDMI outputs.
— HDMI input. Your PC has at least one HDMI input. See above for details on the interface itself; here we note that it is the inputs of this format that are found mainly in monoblocks (see "Type"). At a minimum, this allows you to use the monoblock's own display as a screen for another device (for example, as an external monitor for a laptop). However, there are other, more specific options for using the HDMI input — for example, recording an incoming video signal, or transferring (switching) it to one of the PC video outputs.
Both the HDMI inputs and outputs in modern PCs may correspond to different versions:
- v 1.4. The earliest standard widely used today. Supports resolutions up to 4096x2160 and frame rates up to 120 fps (however, only at a resolution of 1920x1080 or lower), and can also be used to transmit 3D video. In addition to the original version 1.4, you can find improved v 1.4a and v 1.4b — in both cases, the improvements affected mainly the work with 3D.
- v2.0. The standard, also known as HDMI UHD, was the first to introduce full support for UltraHD 4K, with frame rates up to 60 fps, as well as compatibility with a 21:9 aspect ratio. In addition, the number of simultaneously transmitted channels and audio streams has increased to 32 and 4, respectively. It is also worth noting that initially version 2.0 did not provide support for HDR, but it appeared in update v 2.0a; if this feature is important to you, it's ok to clarify which version 2.0 is provided in the PC, the original or the updated one.
- v2.0b. The second update of the above v 2.0. The main update was the expansion of HDR capabilities, in particular, support for two new formats.
- v2.1. It is also HDMI Ultra High Speed: the bandwidth has been increased to such an extent that it became possible to transfer 10K video at 120 fps (not to mention more modest resolutions) as well as work with extended colour schemes up to 16 bits. The latter may come in handy for some professional tasks. However, note that all the features of HDMI v 2.1 are available only when using cables designed for this standard.
— Display port. A digital media interface similar in many respects to HDMI, but mainly used in computer technology — in particular, it is widely used in Apple computers and monitors. One of the interesting features of this standard is the ability to work in the daisy chain format — connecting several screens to one port in series, transmitting its own signal to each of them (although this function is not technically available with all screens for this interface). DisplayPort is also on the market in several versions, the current ones are as follows:
- v 1.2. The earliest widely used version (2010). However, already in this version, 3D compatibility and the daisy chain mode appeared. The maximum fully supported resolution when connecting a single monitor is 5K (30 fps), transmission up to 8K is possible with certain restrictions; a frame rate of 60 Hz is supported up to a resolution of 3840x2160, and 120 Hz — up to 2560x1600. And when using daisy chain, you can connect up to 2 2560x1600 screens at 60 frames per second or up to 4 1920x1200 screens at the same time. In addition to the original version 1.2, there is an improved v 1.2a, the main innovation of which is support for AMD FreeSync, a technology for synchronizing the monitor's frame rate with the signal from an AMD graphics card.
- v 1.3. An update introduced in 2014. The increased bandwidth made it possible to provide full, without restrictions, support for 8K at 30 fps, as well as transmit 4K images at 120 fps, sufficient for 3D work. Resolutions in daisy chain mode have also increased — up to 4K (3840x2160) at 60 fps for two screens and 2560x1600 at the same frame rate for four. Of the specific innovations, it is worth mentioning the Dual Mode mode, which allows you to connect HDMI and DVI devices to such a connector through the simplest passive adapters.
- v 1.4. The newest version widely used in modern PCs. Formally, the maximum connection speed has not increased compared to the previous version, but thanks to signal optimization, it became possible to work with 4K and 5K resolutions at 240 fps and with 8K at 120 fps. However for this, the connected screen must support DSC encoding technology — otherwise, the available resolutions will not differ from version 1.3. In addition, v 1.4 added support for a number of special features, including HDR10, and the maximum number of simultaneously transmitted audio channels increased to 32.
— miniDisplayPort. A smaller version of the DisplayPort connector described above, may also correspond to different versions (see above). Note that the same hardware connector is used in the Thunderbolt interface versions 1 and 2, and the graphic part of this interface is based on DisplayPort. Therefore, even some Thunderbolt monitors can be directly connected to miniDisplayPort (although it is desirable to clarify this possibility separately).
— COM port (RS-232). Serial port, originally used to connect dial-up modems and some peripherals, in particular, mice. However, today this interface is used as a service interface in various devices — TVs, projectors, network equipment (routers and switches), etc. Connecting to a PC via RS-232 allows you to control the operation parameters of an external device from a computer.Speakers
The presence of built-in speakers in the PC.
This function allows you to do without computer speakers and headphones, playing sound on the computer itself. However, note that no built-in system is capable of fully replacing individual speakers. In addition to this, the specifics and overall quality of the built-in acoustics can be different. So, the most advanced and powerful speakers are used in monoblocks (see "Type") — most often such sound systems are not inferior to entry-level computer speakers, or even average ones. In nettops, on the contrary, the sound quality and volume are extremely low, and the acoustics are intended not so much for full listening as for checking whether “there is sound or not” (for example, when setting up external speakers). In principle, speakers are not built into gaming models — such PCs are supposed to be equipped with speakers at their discretion. But in conventional desktop PCs, built-in acoustics may well be used — this is typical mainly for models in the "desktop" format, placed horizontally on the table. The quality of such acoustics is usually somewhere in the middle between nettops and monoblocks.