USA
Catalog   /   Computing   /   Monitors

Comparison MSI Optix MAG301CR2 29.5 " black vs Samsung Odyssey G5 34 34 " black

Add to comparison
MSI Optix MAG301CR2 29.5 "  black
Samsung Odyssey G5 34 34 "  black
MSI Optix MAG301CR2 29.5 " blackSamsung Odyssey G5 34 34 " black
Compare prices 5Compare prices 9
TOP sellers
Product typegamingmonitor
Size29.5 "34 "
Screen
Curved screen1500R1000R
Panel type*VA*VA
Surface treatmentanti-glareanti-glare
Resolution2560x1080 (21:9)3440x1440 (21:9)
Pixel size0.27 mm0.23 mm
Response time (GtG)4 ms4 ms
Response time (MPRT)1 ms1 ms
Refresh rate200 Hz165 Hz
Vertical viewing angle178 °178 °
Horizontal viewing angle178 °178 °
Brightness300 cd/m²250 cd/m²
Static contrast3 000:12 500:1
Dynamic Contrast100 000:1
Colour depth1.07 billion colours (8 bits + FRC)16.7 million colours (8 bits)
Colour space (NTSC)85 %72 %
Colour space (sRGB)95 %
Colour space (Adobe RGB)83 %
Colour space (DCI P3)91 %
HDR++
Connection
Video transmission
DisplayPort v 1.2
2xHDMI
v 2.0
DisplayPort v 1.4
1xHDMI
v 2.0
Connectors (optional)
mini-Jack output (3.5 mm)
mini-Jack output (3.5 mm)
Features
Features
 
Flicker-Free
AMD FreeSync Premium
PBP (Picture by Picture)
Flicker-Free
AMD FreeSync Premium
Portrait pivot
Screen swivel
Height adjustment
USB hub 3.x
 /2/
Fast charge
Game Features
 
brighten darker areas /Night Vision/
aim
brighten darker areas /Black Equalizer/
General
RGB lighting
RGB lighting syncMSI Mystic Light Sync
Wall mountVESA 75x75mmVESA 75x75mm
Power consumption50 W
Energy class (new)G
External power supply
Dimensions (WxHxD)703x512x287 mm
807x475x273 mm /with stand/
Weight5.8 kg
5.6 kg /with stand/
Color
Added to E-Catalogaugust 2023march 2021

Product type

— Monitor. In this case, we mean monitors designed mainly for classic use — as a screen for a personal computer. Their functionality can be quite diverse — from entry-level screens with 1-2 inputs for connection to multifunctional models with built-in speakers, TV tuners, remote controls, etc. The same applies to the diagonal. Most traditional monitors are in the 22-30" range (these sizes are currently considered optimal for screens whose distance is determined by the width of the desktop), but there are also large-format devices whose diagonal can exceed 32".

Portable monitor. A separate caste of monitors designed to connect to laptops. They are distinguished by small diagonal sizes, not exceeding 18", a thin format and the absence of a stand, as a result of which they look like tablets.

Game monitor. Monitors considered optimal for gaming. These are not necessarily devices specially designed for this application (although there are some); however, all gaming monitors have a number of features that gamers will surely appreciate. Firstly, the resolution (see below) in such models is not lower than Full HD. Secondly, the matrices have a low response time — less than 5 ms, which allows high-quality display of dynamic scenes; and the frame rate often reaches 120 Hz or even more (although there are quite modest values). Thirdly, devices of this type often have special gaming (see below...) and similar features — in particular, most gaming monitors are compatible with FreeSync and/or G-Sync technologies (see "Features").

LCD panel. One of the key features that distinguish LCD panels from conventional monitors is the wide variety of connectors: in addition to video outputs, it includes auxiliary ports such as LAN or RS-232 (see "Connectors (Optional)"). It is also believed that the LCD panel must be hung on the wall without fail, but this has its own specifics. Many devices of this type are really made only for wall installation, and some models can be combined into a video wall that broadcasts one image to several screens. But besides this, there are solutions equipped with stands and allowing desktop use (and sometimes even originally designed for it). At the same time, the first variety, "purely wall-mounted", can have almost any diagonal — including modest 21 – 22 "; but the dimensions of "desktop" panels start at 32", moreover, they most often have advanced matrices like IPS. Anyway, such screens are used mainly in rather specific areas. So, wall mounting is convenient for organizing information boards at stations, airports, shopping centers, for use at exhibition stands, conference rooms, etc. Desktop models are useful for those for whom large size and high image quality are of key importance . Also among them there are many devices with touch screens, which further expands the user experience.

— Plasma panel. These types of devices are similar in many ways to the LCD panels described above, but they also have some key differences. The main one is the technology used for the screen: instead of a liquid crystal matrix, plasma panels use cells filled with a special gas and covered with a luminous substance — a phosphor. This technology provides very high image quality, with deep colour reproduction and contrast. At the same time, it is not easy to create a small plasma cell, which is why the pixels on this type of screens have more stringent restrictions on the minimum size. As a result, plasma panels, in principle, are never small — 42 "is considered almost the minimum size for such a screen. In addition, the reverse side of the described advantages is also a slightly shorter service life and higher cost than LCD matrices. As a result," plasma" has not received much distribution, such devices are bought mainly not for "public", but for personal use — for example, as a home theater screen or as equipment for an advanced gamer.

Video wall. Models designed to build video walls. Such a wall is an array of numerous closely arranged screens that can work in concert and produce a large overall image; each screen is responsible for its own fragment of the picture. Such designs are used, in particular, at concerts and other public events, where there are no longer enough separate screens. The main feature of monitors for video walls is a very thin frame — due to this, the boundaries between the segments are almost invisible, and the image is perceived as a whole.

Information display. Narrow-purpose equipment, assuming a stationary method of installation. Such displays are mounted on the wall, built into special niches or openings. They are intended to work as digital signage, broadcast advertising materials, play various video content. Individual instances of information displays can support touch control, have a pre-installed Smart operating system and other "smart" features. As a rule, specialized proprietary software is used to control the operation of such equipment.

Size

Diagonal size of the monitor matrix, in inches.

This parameter is one of the most important for any screen — it determines the total size of its working area. In general, it is believed that larger monitors are more comfortable: a large screen allows you to see a large fragment of text, images, etc. without having to scroll the "picture". On the other hand, the diagonal directly affects the dimensions, weight and cost of the monitor. In addition, it is worth remembering that screens with the same diagonal can have different aspect ratios and different specializations: for example, widescreen models are convenient for playing games and watching movies, while classic 4:3 or 5:4 solutions are preferable for working with documents. Now there are monitors of different diagonals on the market, among them the most popular are: 19–20", 22", 23 – 24", 25 – 26", 27 – 28", 29 – 30", 32", 34" and more.

Curved screen

The presence of a curved screen in the monitor design.

Such a screen has the left and right edges curved forward - it is believed that this shape significantly improves perception compared to a flat surface. At the same time, it makes sense to provide this feature only on fairly large diagonals - at least 30"; therefore, it is typical mainly for high-end models. It is also worth noting that in order to take advantage of all the advantages of a curved screen, you need to look at it from a certain point - at the optimal distance, strictly in the center; however, for computer monitors this is usually not a problem.

The main parameter of a curved screen is the radius of curvature. It is indicated in millimeters along the radius of a circle, the bend of which corresponds to the bend of the monitor: for example, the designation 1800R indicates a radius of 1.8 m.

The smaller the number in this designation, the more curved the screen (all other things being equal). At the same time, some manufacturers claim that the ideal curvature value is 1000R: supposedly, it is with this curvature of the screen that the image on it turns out to be as close as possible to a person’s natural field of vision, and the closer the curvature of the monitor is to 1000R, the better the viewing experience. However, in practice a lot depends on personal preference; and when viewed from a long distance (exceeding the radius of curvature by one a...nd a half times or more), all the advantages of a curved screen are lost.

Resolution

The native resolution of the monitor. Ideally, the resolution of the video signal should be the same, then the quality of the image on the screen will be maximum.

In general, the higher the resolution, the higher the detail and the more advanced the screen is, but the more expensive it will cost (ceteris paribus) and the more power the graphics card will need to work properly at that resolution. As for specific values, they are quite diverse in modern monitors, but all resolutions can be divided into several general categories:

HD (720). Screens suitable for HD video with a resolution of 1280x720. Note that this category also includes models with a resolution of 1024x768 — this figure is somewhat less than necessary to display HD in its original size, but the quality of the HD picture on such a screen still turns out to be quite high. The most popular option among HD monitors is 1366x768, there are also models 1280x768, 1280x800 and non-widescreen (5:3) 1280x1024.

Full HD (1080). Full HD monitors. The classic, most popular version of this resolution is 1920x1080 ( 16:9 format), however, there are other options among monitors, including such specific ones as ultra-widescreen (32:9) 3840x1080, as well as 1600x1200 (a 1920x1080 frame “does not fit into it”) ” in width, but this resolution is still commonly r...eferred to as Full HD). To date, Full HD is a good compromise between image quality, screen cost and graphics card requirements. As a result, it is this format that is most popular among modern monitors.

Quad HD. A kind of intermediate option between the popular Full HD and advanced demanding Ultra HD 4K. It covers resolutions from 1920x1440 to 3200x2400, although most modern Quad HD monitors fit into a narrower range — from 2560x1440 to 3840x1600. Such a screen can be a good option for those who “Full HD is not enough, but 4K is a lot.”

— Ultra HD (4K). This standard assumes a horizontal frame size of approximately 4000 pixels, but specific resolutions may vary. Popular options found in monitors include 3840x2160, 4096x2160, and 4096x2304. Overall, UHD 4K gives you 4 times more pixels on screen than Full HD; such resolutions are typical for high-end monitors and are most often combined with a large diagonal — from 27 "(although there are exceptions).

Ultra HD (5K). An even more advanced standard than UHD 4K, which assumes a horizontal frame size of about 5000 pixels — for example, 5120x2160. It is used extremely rarely, mainly in top professional screens.

— 8K. Further, after 5K, the development of HD standards, which provides for a frame with a horizontal size of about 8000 — for example, one of the 8K resolution options in monitors is 7680x4320. Allows you to get extremely clear and detailed images, but such high-resolution monitors are very expensive, and it is not so easy to find a signal source in such a resolution. Therefore, only single models of 8K monitors are currently on the market.

Pixel size

The size of one dot (pixel) on a monitor screen. This parameter is related to the maximum resolution of the monitor and its diagonal size — the higher the resolution, the smaller the pixel size (with the same diagonal) and vice versa, the larger the diagonal, the larger the size of one pixel (with the same resolution). The smaller the size of one pixel, the clearer the image will be displayed by the monitor, the less grainy it will be noticeable, which is especially important on large monitors. On the other hand, a small pixel size creates discomfort when working with fine details and text — this mainly applies to monitors with a small diagonal.

Refresh rate

The maximum frame rate supported by the monitor at the recommended (maximum) resolution.

The higher the frame rate, the smoother the movement on the screen will look, the less noticeable jerks and blurring will be on it. Of course, the actual image quality also depends on the video signal, but for normal viewing of video at a high frame rate, the monitor must also support it.

When choosing this option, keep in mind that at lower resolutions than the maximum, the supported frame rate may be higher. For example, a model with a 1920x1080 matrix and a claimed frame rate of 60 Hz at a reduced resolution can give 75 Hz; but the 75Hz frame rate is only listed in the specs if it is supported at the monitor's native (maximum) resolution.

Also note that a high frame rate is especially important for gaming models (see "Type"). In most of them, this figure is 120 Hz and higher; monitors with a frequency of 144 Hz are considered the best option in terms of price and quality, however, there are also higher values — 165 Hz and 240 Hz. And monitors at 100 Hz can be both inexpensive gaming models and advanced home ones.

You can evaluate all the frame rates at which this monitor is capable of operating by the ver...tical frequency claimed in the specifications (see below).

Brightness

The maximum brightness provided by the monitor screen.

Choosing a monitor with high brightness is especially important if the device is going to be used in bright ambient light — for example, if the workplace is exposed to sunlight. A dim image can be "dampened" by such lighting, making work uncomfortable. In other conditions, the high brightness of the screen is very tiring for the eyes.

Most modern monitors give out about 200 – 400 cd / m2 — this is usually quite enough even in the sun. However, there are also higher values: for example, in LCD panels (see "Type") the brightness can reach several thousand cd/m2. This is necessary taking into account the specifics of such devices — the image must be clearly visible from a long distance.

Static contrast

Static contrast provided by the monitor screen.

This value describes the difference between the brightest whites and darkest blacks that the screen is capable of producing. In this case, unlike dynamic contrast (see below), the difference is indicated on the condition that the brightness of the screen backlight remains unchanged. In other words, this is the contrast that is guaranteed to be achievable within one frame. Static contrast is inevitably lower than dynamic. However, it is she who describes the basic capabilities of the screen.

The minimum static contrast ratio for tolerable image quality is considered to be 250:1, but even the most modest modern monitors give out about 400:1 (and a value of 1000:1 is not the highest class), and in high-end models this figure can reach 2000:1 and even more. .

Dynamic Contrast

Dynamic contrast provided by the monitor screen.

Dynamic contrast refers to the difference between the brightest white at maximum backlight intensity and the deepest black at minimum backlight. In this way, this indicator differs from static contrast, which is indicated with a constant backlight level (see above). Dynamic contrast ratio can be expressed in very impressive numbers (in some models — more than 100,000,000: 1). However, in fact, these figures are poorly correlated with what the viewer sees: it is almost impossible to achieve such a difference within one frame. Therefore, dynamic contrast is most often more of an advertising than a practically significant indicator, it is often indicated precisely in order to impress an inexperienced buyer. At the same time, we note that there are "smart" backlight technologies that allow you to change its brightness in certain areas of the screen and achieve a higher contrast in one frame than the claimed static one; these technologies are found mostly in premium monitors.
MSI Optix MAG301CR2 often compared
Samsung Odyssey G5 34 often compared