Screen
— Display diagonal. Size screen dimensions; traditionally indicated in ". Larger screens are easy to view and easy to touch. On the other hand, this parameter directly affects the dimensions, power consumption and price of the entire tablet (the increase in cost is often also due to the fact that a larger screen also requires a higher resolution). Rare birds from the family of modern tablets have
7-" screens; many of them look like slightly enlarged smartphones. Sizes of
8 " and
9 " can be considered basic.
10-" and
11-" diagonals are quite large for a consumer-class tablet; and
screens of 12",
13",
14" and more are typical mainly for professional-level models.
– Resolution. Screen resolution on a tablet is the dimensions of the sensor in dots (pixels) horizontally and vertically. Based on this parameter, screens in modern tablets are conventionally divided into three categories:
HD,
Full HD,
2K and higher. The higher the display resolution, the clearer, more detailed and smoother the image it can reproduce. High resolution is especially important for large diagonal displays. At the same time, it significantly affec
...ts the cost - both due to the high price of the screens themselves and due to the increased requirements for system performance.
— PPI. An abbreviation for "points per inch," i.e., "pixels per inch". This setting determines how many pixels are on a 1-" (2.54 cm) line drawn horizontally or vertically across the screen; it directly depends on the resolution and dimensions of the display. In general, the higher the PPI value, the clearer, smoother and, accordingly, the higher quality the picture on the screen will be. And at a certain pixel density, the human eye generally ceases to distinguish individual points, perceiving a completely smoothed image.
— Matrix type. The technology used to make the tablet PC display. Today the following types of matrices are used:
- — TN-Film(Twisted Nematic+Film). The oldest modern technology for manufacturing liquid crystal screens. Such matrices are characterized by a short response time, but have small viewing angles and provide relatively low image quality. For some time they were quite popular due to their low cost, but today they have practically disappeared from the scene due to the development and reduction in cost of more advanced technologies.
- — IPS(In Plane Switching). Such matrices are characterized by excellent color rendering and wide viewing angles in all viewing planes. Initially, they had a fairly long response time and were expensive, but technology does not stand still - improved versions of IPS are “faster” and inexpensive. Thanks to this, this type of sensor is found in all types of tablets, even among budget-class devices.
- — PLS(Plane to Line Switching). A type of sensor developed by Samsung engineers as an inexpensive and higher quality alternative to the original IPS, with increased brightness and contrast. For a number of reasons, it is used primarily in devices in the middle and higher price ranges.
- — LTPS(Low Temperature Poly Silicon). Technology for producing TFT displays using silicon. Indicators of brightness, contrast and viewing angles are at the level of screens made on the basis of IPS. A key feature of this technology is the ability to embed control electronics directly into the screen, but at the same time these displays remain light and thin. This technology is quite expensive to produce, but due to the fact that there is no need to use additional chips to control the image, the price of the end devices is at an acceptable level.
- — MVA. Abbreviation for "Multi-domain Vertical Alignment". One of the most popular types of VA technology today. It is a kind of transitional option between TN-film and IPS (see above), combining a number of advantages of both types. On the one hand, MVA matrices provide fairly high-quality color reproduction and deep blacks, on the other hand, their response time is not much lower than in TN-film. At the same time, such screens are not without drawbacks: when viewed strictly perpendicularly, the shades of black can be “blurred” and merge, and the color balance as a whole significantly depends on the viewing angle. It is not widely used on tablets.
- - AMOLED. An abbreviation for “Active Matrix Organic Light Emitting Diode,” that is, an active sensor based on organic light-emitting diodes. Unlike most other types of screens, the AMOLED sensor is itself a light source and does not require a separate backlight, which significantly reduces energy consumption. Moreover, such screens are characterized by high quality contrast and color reproduction, and the image on them is clearly visible even in bright external lighting. The main disadvantages of AMOLED are the complexity of production (as a consequence - high price), as well as the tendency to uneven wear ("burnout") of pixels during prolonged operation at high brightness, which can disrupt color rendition. On the other hand, it is very difficult to bring the display to such wear and tear, and AMOLED sensor manufacturers are constantly working on new modifications of the technology designed to eliminate these shortcomings.
- - Super AMOLED. A modified and improved version of AMOLED technology created by Samsung; LG produces such screens under the Ultra AMOLED brand. One of the key improvements to this technology is that in Super AMOLED screens the touch layer is built directly into the display (rather than being made separate). This had a positive effect both on the quality of color reproduction and image brightness, as well as on the accuracy and speed of the sensors. In addition, this type of screen is 20% brighter than original AMOLED, has 80% less glare and consumes 20% less energy.
- — Super Clear TFT. A technology created by Samsung together with Sony as an alternative to Super AMOLED displays (the demand for which was so high that manufacturers simply did not have enough capacity to produce the required quantity). Created on the basis of the usual TFT with some improvements and additions; In terms of image quality, Super AMOLED is somewhat inferior, but not by much, but the production of Super Clear TFT is much cheaper and easier.
- — OLED. Various types of matrices based on organic light-emitting diodes. In terms of features such as color rendering, contrast, power consumption, such screens are similar to the AMOLED ones described above; differences may lie in small details of technology. In general, OLED displays are quite advanced, they are found mainly in high-end tablet models. The main disadvantages of OLED screens are their high price (which, however, is constantly decreasing as the technology develops and improves), as well as the susceptibility of organic pixels to burn out when broadcasting static images or pictures with static elements (notification panel, on-screen buttons, etc.) for a long time. ).
— Sweep frequency. The maximum refresh rate of the display, in other words, the highest frame rate that it can effectively reproduce. The higher this indicator, the smoother and smoother the image is, the less noticeable the “slideshow effect” and blurring of objects when moving on the screen. At the same time, it is worth considering that a refresh rate of 60 Hz, supported by almost any modern tablet, is quite sufficient for most tasks; Even high-definition videos hardly use high frame rates these days. However, high refresh rates - 90 Hz, 120 Hz, 144 Hz - can be useful in games and some other tasks; it also improves the overall experience of the OS interface and applications - moving elements in such interfaces move as smoothly as possible and without blurring.
– HDR. Technology that allows you to expand the dynamic range of the screen. In this case, we mean a range of brightness - simply put, the presence of HDR allows the screen to display brighter whites and darker blacks than on displays without support for this technology. In practice, this gives a noticeable increase in picture quality: the saturation and fidelity of the rendition of various colors improves, and details in very light or very dark areas of the frame do not “drown” in white or black. However, all these advantages become noticeable only if the content being played is originally recorded in HDR. Nowadays, several varieties of this technology are used, here are their features:
- HDR10. Historically the first of the consumer HDR formats, it is extremely popular today: in particular, it is supported by almost all streaming services with HDR content and is standardly used for such content on Blu-ray discs. Provides 10-bits color depth (more than a billion shades). At the same time, on devices with this technology, you can also play HDR10+ format content (see below) - except that its quality will be limited by the capabilities of the original HDR10.
- HDR10+. Improved version of HDR10. With the same color depth (10 bits), it uses so-called dynamic metadata, which allows you to transmit information about the color depth not only for groups of several frames, but also for individual frames. Thanks to this, an additional improvement in color rendering is achieved.
- Dolby Vision. An advanced standard used particularly in professional cinematography. It allows you to achieve a color depth of 12 bits (almost 69 billion shades), uses the dynamic metadata mentioned above, and also makes it possible to transmit two image options at once in one video stream - HDR and regular (SDR). At the same time, Dolby Vision is based on the same technology as HDR10, so in modern electronics this format is often combined with HDR10 or HDR10+.
— Gorilla Glass. Special tempered glass used to cover displays in modern gadgets, including tablets. It is characterized by increased resistance to scratches and impacts; but the specific properties of the Gorilla Glass coating depend on its version. This parameter can also be specified in the tablet's specifications; Here are the most current versions for today:
- Gorilla Glass v3. Released in 2013, but still found in modern devices. This is primarily due to its outstanding scratch resistance: according to this indicator, the third version of the “gorilla” remained unsurpassed right up to 2020 (and Gorilla Glass Victus, which took the lead, is still practically not used in tablets).
- Gorilla Glass v4. Coating created in 2014. The main emphasis during development was on impact resistance, due to which this indicator, compared to the previous version, doubled (with a glass thickness of only 0.4 mm). But the scratch resistance has decreased somewhat.
- Gorilla Glass v5. Version introduced in 2016. Impact resistance, compared to its predecessor, has increased by 1.8 times, due to which such glass remains intact in 100% of cases of a fall from a height of 1.2 m (on a flat hard surface) and in 80% of cases of a fall from a height of 1.6 m. Scratch resistance has also improved somewhat, but this material still does not reach the performance levels of v3.
- Gorilla Glass v6. 2018 version with a focus on improving impact resistance. Twice stronger than version 5, guaranteed to withstand single drops from a height of 1.6 m and multiple drops (up to 15 times in a row) from a height of 1 m.
- Gorilla Glass Victus. After v3, this is the first version of Gorilla Glass where the creators paid as much attention to scratch resistance as shock protection. Victus glass debuted in 2020. Shock resistance for it is declared at the level of 2 m for a single fall and 1 m for multiple falls (up to 20 times in a row).
- Gorilla Glass Victus+. An improved modification of Gorilla Glass Victus, released in 2022. Close to ceramics in terms of scratch resistance. Thus, according to the Mohs mineral scale of hardness, glass begins to scratch at level 7/10, while the original Victus version scratches at level 6/10.
Screen to body ratio
This parameter shows how much of the tablet's front panel area is on the display. The higher the display/body ratio, the thinner the frames and the more compact the tablet (with the same diagonal), the more elegant and aesthetically pleasing it looks. This indicator is also important when holding the tablet with both hands at once (for example, in games):
thin frames or even
frameless models allow you to reach further with your fingers without removing your hands from the device.
CPU speed
The clock speed of the processor installed in the tablet is actually the maximum number of operations performed by one processor core per second. This indicator is important for the speed of the system, but a high clock frequency in itself does not guarantee speed. The actual speed of the processor also depends on its architecture, the number of cores and many other features, and the overall speed of the device also depends on the amount of “RAM”, the installed OS, etc. Therefore, situations are not uncommon when
powerful advanced tablets have a lower CPU frequency than more modest models.
RAM
The amount of random access memory (RAM) installed in the tablet. This memory is used for direct data processing, and therefore its volume is one of the main indicators of system speed and power. However note that the optimal amount of RAM strongly depends on the OS used — different systems and even different versions of the same "OS" can vary greatly in terms of consumed resources. But models on the same OS can be compared with each other in terms of the amount of RAM.
As for specific values, indicators in
1 GB or less in our time are definitely a sign of a weak tablet.
2 GB and
3 GB can be called the entry level,
4 GB and
6 GB are middle class, and in the most advanced models,
8 GB, or even
16 GB can be installed (or even more) RAM.
SIM card
The tablet's support
for SIM cards means that it supports mobile networks (3G, LTE or even 5G - depending on the model). At a minimum, installing a card allows you to connect to the Internet to always stay connected. Note that modern tablets can use several different types of SIM cards. Before choosing a SIM card, you need to check what size card is suitable for the device.
- micro-SIM. The largest type of SIM card widely used in modern devices: it has a size of 15x12 mm. It was introduced back in 2010; nowadays it is being replaced by more compact and advanced nano-SIM and eSIM. Note that, as a last resort, a card for the microSIM slot can be made by simply cutting a larger mini-SIM to the required dimensions. However, such an operation is associated with a certain risk and requires care, so it is better to contact your mobile operator to replace the SIM card with a suitable one.
- nano-SIM. The smallest form factor of classic (replaceable) SIM cards is 12x9 mm. In such cards, the frames are cut almost “to fit the chip itself,” so there is essentially nowhere to further reduce traditional SIM cards. This standard appeared back in 2012, but it is still extremely widespread.
-
e-SIM. A SIM card of this type is an electronic module built directly into the device and cannot be replaced. To authorize in the mobile operator’s network, you need to make the appropriate settings in t
...he e-SIM; Moreover, such modules are able to save several sets of settings at once, which allows you to easily switch between different operators - no need to bother with physically replacing the SIM card, just change the profile in the settings. Another advantage of such modules is their compactness. However, before buying a phone with e-SIM, it doesn’t hurt to check whether this technology is supported by your mobile operator - even nowadays, not every network is compatible with such modules.
At the same time, the tablet is not always limited to one card slot. There are also options for two slots - this allows you to use two numbers at the same time in one device. The main convenience here is that to choose between two connection options, you don’t have to change the card in your tablet every time (and also risk losing the unused one). And the ability to choose may not be superfluous, given that different operators offer different communication standards, coverage areas and payment terms.Connections
—
microUSB. A smaller version of the USB connector, widely used in modern tablets as a universal interface. MicroUSB is used primarily to charge the battery and connect the device to a computer, and with USB OTG support, flash drives and other accessories are connected to it (of course, an adapter is required to work with a full-size USB plug). This connector is gradually being replaced by a more convenient and advanced USB-C (see below), but microUSB is still very far away from the complete disappearance.
—
USB-C.It has similar dimensions to microUSB (see above) and replaced it, but differs in the design of the connector – it is symmetrical, which allows you to connect the plug to either side. In terms of application, this interface is also similar to microUSB, with the adjustment that USB-C often supports the advanced USB 3.2 gen2 standard, which provides speeds up to 10 Gbps. In addition, it is easier to implement fast charging through such a connector — some of the charging technologies were originally created for USB-C.
—
USB4. A high-speed revision of the USB interface introduced in 2019. It uses only symmetrical USB-C connectors and does not have its own data format — instead, such a connection is used to transfer information according to several standards at once: USB 3.2 and DisplayPort as mandatory, as well as PCI-E as an option. Another feature
...is that USB4 is based on the Thunderbolt protocol. It is also worth noting that this USB revision allows connecting devices in a daisy chain and by default supports Power Delivery technology, which allows you to optimize the process of charging external gadgets (provided that they also implement this technology).
The maximum data transfer rate for such a connector should be at least 10 Gbps, in fact, options for 20 Gbps and even 40 Gbps are often found (depending on the technologies and standards supported by a particular port). At the same time, the USB4 inputs are quite compatible with the peripherals of the USB-C connector.
— USB 2.0. Full size USB port 2.0 compliant. Such a port allows you to connect ordinary USB peripherals to the tablet — for example, flash drives or keyboards; however, due to its large size, it is rare, mainly in business models and in "hybrids" equipped with docking stations (in such cases, the port can be placed on the docking station). Version 2.0 supports data transfer rates up to 480 Mbps and is still quite popular, although it is gradually being replaced by more advanced standards — primarily USB 3.2 (see below).
— USB 3.2 gen1. USB version, formerly known as USB 3.1 gen1 or USB 3.0. Utilizes a traditional full-size USB port and delivers speeds up to 4.8Gbps — 10 times faster than the previous 2.0 version — as well as more power. At the same time, it is quite possible to connect USB 2.0 peripherals to such connectors.
— HDMI. A digital interface specially designed for broadcasting HD content: high-definition video and multi-channel audio. It is very popular in video technology, in particular, it is used in almost all modern TVs, it is often found in projectors, media players, etc. So HDMI support will be very useful if you plan to broadcast video from a tablet to an external screen. In portable technology, it is usually not a full-size connector that is used, but a reduced miniHDMI or microHDMI, however, finding a cable for such a port is not a problem.
— Mini-jack (3.5 mm). Standard 3.5mm mini-jack. Such a plug is used by the vast majority of modern wired headphones, headsets and portable speakers, therefore, in most tablets, it is the 3.5 mm port that plays the role of an audio jack. However if there are no problems with headphones and speakers, then compatibility with headsets needs to be specified separately — these devices have their own connection specifics. Also note that there are tablets without a 3.5 mm jack — they are usually designed for specialized accessories connected via a proprietary connector, or for wireless Bluetooth audio equipment.Digital compass
A sensor that allows you to determine the direction to the cardinal points. Uses the earth's magnetic field, like a conventional mechanical compass, so the accuracy of the readings can be quite low. However, tablets are rarely used for high-precision compass navigation, and this disadvantage is not critical.
Main
— The number of lenses. The characteristics of the main (rear) camera of the tablet are represented primarily by the number of modules, which in most cases are 1, but there are also
tablets with a dual camera.
— Resolution. The second important factor of the camera is the number of megapixels. Many really believe that the more MP, the better the quality of filming. However, this is not entirely true: only the maximum resolution of the resulting images depends on the resolution of the matrix, and their quality is determined by many other parameters. However a large sensor resolution may be a sign of an advanced camera, but this is not necessary — two "eyes" with the same number of megapixels can radically differ in the quality of shooting.
Rear cameras in tablets may well be used for photo and video shooting; therefore, they have
cameras of 8 MP,
10 MP and even higher (
12 and
13 MP).
— Autofocus. For focus in such cameras, a movable lens system controlled by automation is responsible. It takes some time for the automation to work, and the lenses themselves turn out to be more complicated and more expensive than optics with a fixed focus (fixed lenses that are initially set to a large range of distances). However, the quality of the pictures is disproportionate
...ly higher than that of cameras without autofocus, and the systems themselves are constantly being improved, and their response time is increasingly approaching instantaneous.
— Flash. Flash significantly expands the capabilities of the camera. First of all, it allows you to shoot in low light conditions; in this case, the backlight, usually, can also be used in the constant glow mode — for video shooting. The second situation where a flash can come in handy is backlighting when the subject is in shadow. In addition, in many tablets, the flash LED can also be used as a regular flashlight, without a camera.Full HD filming (1080p)
The resolution and maximum frame rate provided by the main camera when
recording Full HD (1080p) video at normal speed, without slow motion (if available).
The standard resolution for this format is 1920x1080. Note that this can be either the maximum shooting resolution or one of the relatively simple options in addition to more advanced standards (such as UltraHD 4K). At the same time, Full HD is considered more than a decent resolution by modern standards, and at the same time, it can be supported even by fairly simple and inexpensive tablets.
As for the frame rate, there are actually two values in normal shooting - Full HD 30 fps and
Full HD 60 fps. A higher frame rate allows you to achieve very smooth display of dynamic scenes - even fast-moving objects in the frame are seen as clearly as possible, with almost no blurring. However, the low shooting speed also has its advantages - it allows you to reduce the amount of material being shot. Therefore, tablets that support 60 fps may have the ability to reduce the frame rate to 30 fps. But speeds above 60 fps are already used for shooting slow-motion video (slow-mo); see "Slow-mo" for more on this.