USA
Catalog   /   Computing   /   Tablets & Accessories   /   Tablets

Comparison Apple iPad Pro 11 2021 128 GB vs Apple iPad Pro 12.9 2020 128 GB

Add to comparison
Apple iPad Pro 11 2021 128 GB
Apple iPad Pro 12.9 2020 128 GB
Apple iPad Pro 11 2021 128 GBApple iPad Pro 12.9 2020 128 GB
Compare prices 6Compare prices 4
TOP sellers
Main
Lidar scanner (working with augmented reality). Thunderbolt 4 port. Apple M1 processor. Liquid Retina display. Face ID face recognition.
Face ID. Frameless display. USB-C Two main cameras 12 MP and 10 MP. Magic Keyboard support. Lidar distance sensor (working with augmented reality)
Operating systemiPadOSiPadOS
Screen
Screen
11 " /oleophobic and anti-reflective coating/
2380х1668 px
265 ppi
IPS /Liquid Retina IPS/
120 Hz
light sensor
12.9 " /oleophobic and anti-reflective coating/
2732x2048 px
265 ppi
IPS
120 Hz
light sensor
Brightnessbefore 600 nitbefore 600 nit
Screen to body ratio85 %85 %
DCI-P3
Hardware
CPUApple M1Apple A12Z
CPU cores88
RAM8 GB6 GB
RAM type  
Storage capacity128 GB128 GB
Storage type  
Card reader
Test results
AnTuTu Benchmark747 000 score(s)
Communication
SIM cardnot supportednot supported
Wi-FiWi-Fi 6 (802.11ax)Wi-Fi 6 (802.11ax)
Bluetoothv 5.0v 5.0
Connections
USB C
USB C
Navigation
Digital compass
Camera
Main
2 modules
12 MP
10 MP
autofocus
flash
2 modules
12 MP
10 MP
autofocus
flash
Full HD filming (1080p)60 fps
Ultra HD filming (4K)60 fps3840x2160 px
Slow motion (slow-mo)
240 fps /at 1080p/
Optical zoom
 /x2/
Camera (front)
12 MP /f/2.4 aperture/
7 MP /f/2.2 aperture/
Features
More features
3D face scanner
gyroscope
3D face scanner
gyroscope
Acousticsstereostereo
Power source
Battery capacity7538 mAh9720 mAh
Charger power18 W
General
Compatible stylusApple Pencil gen 2
Material
metal /aluminium/
metal /aluminium/
Size247.6x178.5x5.9 mm280.6x214.9x5.9 mm
Weight466 g641 g
Color
Added to E-Catalogapril 2021march 2020

Screen

— Display diagonal. Size screen dimensions; traditionally indicated in ". Larger screens are easy to view and easy to touch. On the other hand, this parameter directly affects the dimensions, power consumption and price of the entire tablet (the increase in cost is often also due to the fact that a larger screen also requires a higher resolution). Rare birds from the family of modern tablets have 7-" screens; many of them look like slightly enlarged smartphones. Sizes of 8 " and 9 " can be considered basic. 10-" and 11-" diagonals are quite large for a consumer-class tablet; and screens of 12", 13", 14" and more are typical mainly for professional-level models.

– Resolution. Screen resolution on a tablet is the dimensions of the sensor in dots (pixels) horizontally and vertically. Based on this parameter, screens in modern tablets are conventionally divided into three categories: HD, Full HD, 2K and higher. The higher the display resolution, the clearer, more detailed and smoother the image it can reproduce. High resolution is especially important for large diagonal displays. At the same time, it significantly affec...ts the cost - both due to the high price of the screens themselves and due to the increased requirements for system performance.

— PPI. An abbreviation for "points per inch," i.e., "pixels per inch". This setting determines how many pixels are on a 1-" (2.54 cm) line drawn horizontally or vertically across the screen; it directly depends on the resolution and dimensions of the display. In general, the higher the PPI value, the clearer, smoother and, accordingly, the higher quality the picture on the screen will be. And at a certain pixel density, the human eye generally ceases to distinguish individual points, perceiving a completely smoothed image.

— Matrix type. The technology used to make the tablet PC display. Today the following types of matrices are used:
  • TN-Film(Twisted Nematic+Film). The oldest modern technology for manufacturing liquid crystal screens. Such matrices are characterized by a short response time, but have small viewing angles and provide relatively low image quality. For some time they were quite popular due to their low cost, but today they have practically disappeared from the scene due to the development and reduction in cost of more advanced technologies.
  • IPS(In Plane Switching). Such matrices are characterized by excellent color rendering and wide viewing angles in all viewing planes. Initially, they had a fairly long response time and were expensive, but technology does not stand still - improved versions of IPS are “faster” and inexpensive. Thanks to this, this type of sensor is found in all types of tablets, even among budget-class devices.
  • PLS(Plane to Line Switching). A type of sensor developed by Samsung engineers as an inexpensive and higher quality alternative to the original IPS, with increased brightness and contrast. For a number of reasons, it is used primarily in devices in the middle and higher price ranges.
  • LTPS(Low Temperature Poly Silicon). Technology for producing TFT displays using silicon. Indicators of brightness, contrast and viewing angles are at the level of screens made on the basis of IPS. A key feature of this technology is the ability to embed control electronics directly into the screen, but at the same time these displays remain light and thin. This technology is quite expensive to produce, but due to the fact that there is no need to use additional chips to control the image, the price of the end devices is at an acceptable level.
  • — MVA. Abbreviation for "Multi-domain Vertical Alignment". One of the most popular types of VA technology today. It is a kind of transitional option between TN-film and IPS (see above), combining a number of advantages of both types. On the one hand, MVA matrices provide fairly high-quality color reproduction and deep blacks, on the other hand, their response time is not much lower than in TN-film. At the same time, such screens are not without drawbacks: when viewed strictly perpendicularly, the shades of black can be “blurred” and merge, and the color balance as a whole significantly depends on the viewing angle. It is not widely used on tablets.
  • - AMOLED. An abbreviation for “Active Matrix Organic Light Emitting Diode,” that is, an active sensor based on organic light-emitting diodes. Unlike most other types of screens, the AMOLED sensor is itself a light source and does not require a separate backlight, which significantly reduces energy consumption. Moreover, such screens are characterized by high quality contrast and color reproduction, and the image on them is clearly visible even in bright external lighting. The main disadvantages of AMOLED are the complexity of production (as a consequence - high price), as well as the tendency to uneven wear ("burnout") of pixels during prolonged operation at high brightness, which can disrupt color rendition. On the other hand, it is very difficult to bring the display to such wear and tear, and AMOLED sensor manufacturers are constantly working on new modifications of the technology designed to eliminate these shortcomings.
  • - Super AMOLED. A modified and improved version of AMOLED technology created by Samsung; LG produces such screens under the Ultra AMOLED brand. One of the key improvements to this technology is that in Super AMOLED screens the touch layer is built directly into the display (rather than being made separate). This had a positive effect both on the quality of color reproduction and image brightness, as well as on the accuracy and speed of the sensors. In addition, this type of screen is 20% brighter than original AMOLED, has 80% less glare and consumes 20% less energy.
  • Super Clear TFT. A technology created by Samsung together with Sony as an alternative to Super AMOLED displays (the demand for which was so high that manufacturers simply did not have enough capacity to produce the required quantity). Created on the basis of the usual TFT with some improvements and additions; In terms of image quality, Super AMOLED is somewhat inferior, but not by much, but the production of Super Clear TFT is much cheaper and easier.
  • — OLED. Various types of matrices based on organic light-emitting diodes. In terms of features such as color rendering, contrast, power consumption, such screens are similar to the AMOLED ones described above; differences may lie in small details of technology. In general, OLED displays are quite advanced, they are found mainly in high-end tablet models. The main disadvantages of OLED screens are their high price (which, however, is constantly decreasing as the technology develops and improves), as well as the susceptibility of organic pixels to burn out when broadcasting static images or pictures with static elements (notification panel, on-screen buttons, etc.) for a long time. ).

— Sweep frequency. The maximum refresh rate of the display, in other words, the highest frame rate that it can effectively reproduce. The higher this indicator, the smoother and smoother the image is, the less noticeable the “slideshow effect” and blurring of objects when moving on the screen. At the same time, it is worth considering that a refresh rate of 60 Hz, supported by almost any modern tablet, is quite sufficient for most tasks; Even high-definition videos hardly use high frame rates these days. However, high refresh rates - 90 Hz, 120 Hz, 144 Hz - can be useful in games and some other tasks; it also improves the overall experience of the OS interface and applications - moving elements in such interfaces move as smoothly as possible and without blurring.

HDR. Technology that allows you to expand the dynamic range of the screen. In this case, we mean a range of brightness - simply put, the presence of HDR allows the screen to display brighter whites and darker blacks than on displays without support for this technology. In practice, this gives a noticeable increase in picture quality: the saturation and fidelity of the rendition of various colors improves, and details in very light or very dark areas of the frame do not “drown” in white or black. However, all these advantages become noticeable only if the content being played is originally recorded in HDR. Nowadays, several varieties of this technology are used, here are their features:
  • HDR10. Historically the first of the consumer HDR formats, it is extremely popular today: in particular, it is supported by almost all streaming services with HDR content and is standardly used for such content on Blu-ray discs. Provides 10-bits color depth (more than a billion shades). At the same time, on devices with this technology, you can also play HDR10+ format content (see below) - except that its quality will be limited by the capabilities of the original HDR10.
  • HDR10+. Improved version of HDR10. With the same color depth (10 bits), it uses so-called dynamic metadata, which allows you to transmit information about the color depth not only for groups of several frames, but also for individual frames. Thanks to this, an additional improvement in color rendering is achieved.
  • Dolby Vision. An advanced standard used particularly in professional cinematography. It allows you to achieve a color depth of 12 bits (almost 69 billion shades), uses the dynamic metadata mentioned above, and also makes it possible to transmit two image options at once in one video stream - HDR and regular (SDR). At the same time, Dolby Vision is based on the same technology as HDR10, so in modern electronics this format is often combined with HDR10 or HDR10+.


Gorilla Glass. Special tempered glass used to cover displays in modern gadgets, including tablets. It is characterized by increased resistance to scratches and impacts; but the specific properties of the Gorilla Glass coating depend on its version. This parameter can also be specified in the tablet's specifications; Here are the most current versions for today:
  • Gorilla Glass v3. Released in 2013, but still found in modern devices. This is primarily due to its outstanding scratch resistance: according to this indicator, the third version of the “gorilla” remained unsurpassed right up to 2020 (and Gorilla Glass Victus, which took the lead, is still practically not used in tablets).
  • Gorilla Glass v4. Coating created in 2014. The main emphasis during development was on impact resistance, due to which this indicator, compared to the previous version, doubled (with a glass thickness of only 0.4 mm). But the scratch resistance has decreased somewhat.
  • Gorilla Glass v5. Version introduced in 2016. Impact resistance, compared to its predecessor, has increased by 1.8 times, due to which such glass remains intact in 100% of cases of a fall from a height of 1.2 m (on a flat hard surface) and in 80% of cases of a fall from a height of 1.6 m. Scratch resistance has also improved somewhat, but this material still does not reach the performance levels of v3.
  • Gorilla Glass v6. 2018 version with a focus on improving impact resistance. Twice stronger than version 5, guaranteed to withstand single drops from a height of 1.6 m and multiple drops (up to 15 times in a row) from a height of 1 m.
  • Gorilla Glass Victus. After v3, this is the first version of Gorilla Glass where the creators paid as much attention to scratch resistance as shock protection. Victus glass debuted in 2020. Shock resistance for it is declared at the level of 2 m for a single fall and 1 m for multiple falls (up to 20 times in a row).
  • Gorilla Glass Victus+. An improved modification of Gorilla Glass Victus, released in 2022. Close to ceramics in terms of scratch resistance. Thus, according to the Mohs mineral scale of hardness, glass begins to scratch at level 7/10, while the original Victus version scratches at level 6/10.

DCI-P3

Percentage of screen coverage of the DCI-P3 color model.

This space has a wider range of colors than the standard sRGB triangle. In general, the DCI-P3 color space corresponds to the Adobe RGB model, but with a red shift. In practice, a high coverage rate means high-quality color rendition of the screen and allows you to use the tablet for design tasks.

CPU

The model name of the processor installed in the tablet.

The processor is the “heart” of the device. It is he who is responsible for performing all the computing operations necessary for the normal operation of the tablet, and largely determines the overall performance. Knowing the name of a specific processor model, you can easily find detailed information on it, incl. and comparison with other models.

The most popular chips these days are from Qualcomm(in particular, the top solutions Snapdragon 800 series and Snapdragon 8 series), MediaTek(budget and “mid-range” MediaTek Helio processors and the line of advanced MediaTek Dimensity chipsets with 5G support), and among Windows tablets Intel processors (mainly the Intel Core family) are often found. Quite a rarity are branded Kirin processors from Huawei and Honor.

RAM

The amount of random access memory (RAM) installed in the tablet. This memory is used for direct data processing, and therefore its volume is one of the main indicators of system speed and power. However note that the optimal amount of RAM strongly depends on the OS used — different systems and even different versions of the same "OS" can vary greatly in terms of consumed resources. But models on the same OS can be compared with each other in terms of the amount of RAM.

As for specific values, indicators in 1 GB or less in our time are definitely a sign of a weak tablet. 2 GB and 3 GB can be called the entry level, 4 GB and 6 GB are middle class, and in the most advanced models, 8 GB, or even 16 GB can be installed (or even more) RAM.

AnTuTu Benchmark

The result shown by a device when undergoing a performance test (benchmark) in the AnTuTu Benchmark.

AnTuTu Benchmark is a comprehensive test designed specifically for mobile devices, primarily smartphones and tablets. It evaluates the performance of the processor, memory, graphics, and input/output systems, providing a clear impression of the system's capabilities. The better the performance, the higher the score. According to AnTuTu, top models are those that score more than 500,000 points.

As with any benchmark, this test does not provide absolute precision; for more details on measurement inaccuracies, see the "3DMark Gamer's Benchmark" section.

Full HD filming (1080p)

The resolution and maximum frame rate provided by the main camera when recording Full HD (1080p) video at normal speed, without slow motion (if available).

The standard resolution for this format is 1920x1080. Note that this can be either the maximum shooting resolution or one of the relatively simple options in addition to more advanced standards (such as UltraHD 4K). At the same time, Full HD is considered more than a decent resolution by modern standards, and at the same time, it can be supported even by fairly simple and inexpensive tablets.

As for the frame rate, there are actually two values in normal shooting - Full HD 30 fps and Full HD 60 fps. A higher frame rate allows you to achieve very smooth display of dynamic scenes - even fast-moving objects in the frame are seen as clearly as possible, with almost no blurring. However, the low shooting speed also has its advantages - it allows you to reduce the amount of material being shot. Therefore, tablets that support 60 fps may have the ability to reduce the frame rate to 30 fps. But speeds above 60 fps are already used for shooting slow-motion video (slow-mo); see "Slow-mo" for more on this.

Ultra HD filming (4K)

The resolution and maximum frame rate provided by the main camera when shooting UltraHD (4K) video at normal speed, without using slow motion (if available).

UHD 4K is the most advanced high-definition video standard in widespread use (more advanced standards exist but are not found on tablets).

The frame rate, in turn, determines how smooth the video will look, how clearly fast moving objects will be visible in it. With normal (not slow-motion) shooting in modern HD standards, including UHD, two options are actually used - 30 fps and 60 fps. The second option allows you to achieve very smooth video, with good motion detail in the frame and almost no blurring in dynamic scenes. However, it does affect the price.

Slow motion (slow-mo)

The frame rate supported by the device in slow motion (slow-mo).

In general, such shooting is called "high-speed" because it is carried out at an increased frame rate (more than 60 fps). As a result, when playing at normal speed (60 fps and below), the video looks slow (hence the name “slow-mo”). Such slowing down can be used just for fun, and as an artistic device, and even for scientific purposes - to capture movement that is too fast for human perception. Anyway, the higher the slow-mo frame rate, the more you can slow down the video and the more advanced the camera is in this regard; the minimum value nowadays is actually 120 fps, and in advanced devices this figure is 480 fps and even more. On the other hand, the higher the frame rate, the more performant the graphics part should be; and this, in turn, affects the price of the device, sometimes quite noticeably.

Also note that slow-mo shooting can only be available at certain resolutions, which are not always the maximum; these points can be directly specified in the characteristics of the tablet.

Optical zoom

The presence of optical zoom in the main camera (in modules for several lenses - at least in one lens, usually the main one).

Such an increase is carried out due to the movement of the lenses in the camera lens: shifting the lenses reduces the viewing angle, as a result, the objects remaining in the frame look larger. This is more effective than digital zoom, when a separate section of the image from the sensor is stretched over the entire frame: optical zoom, in contrast, allows you to use the entire area of \u200b\u200bthe sensor and shoot at full resolution, regardless of the zoom level. On the other hand, moving lens systems are quite complex and expensive, and it is difficult to achieve powerful optical zoom in tablets due to size limitations. And the optical zoom ratio is small - from a certain moment the camera switches to digital zoom or to a separate telephoto lens (there is also such a format of work).
Apple iPad Pro 11 2021 often compared
Apple iPad Pro 12.9 2020 often compared