USA
Catalog   /   Sound & Hi-Fi   /   Musical Instruments   /   Pianos & Keyboards   /   Synthesizers

Comparison Roland FA-06 vs Korg Krome-61

Add to comparison
Roland FA-06
Korg Krome-61
Roland FA-06Korg Krome-61
from $1,449.99 
Outdated Product
from $1,356.60 up to $1,377.00
Outdated Product
TOP sellers
Main
Convenient interface. Sampler. SuperNATURAL technology. Sound Modify function. Infrared sensor D-Beam. sub out.
Typework stationwork station
Keys
Number of keys6161
Sizefull sizefull size
Mechanicsactiveactive
Rigidityweightedsemi-weighted
Specs
Polyphony128 voices120 voices
Built-in timbres2000 шт640 шт
Tempo change40 – 300
Metronome
Sequencer (recording)
Sampling
Mixer
Built-in compositions
Effects and control
Timbres layering
Keyboard split
Octave shift
Arpeggiator
Reverberation
 /6/
Chorus
 /3/
Transposition
Pitch controller
Modulation controller
Vocoder
Fine tuning
Connectors
Inputs
mini-Jack (3.5 mm)
Jack (6.35 mm)
MIDI in
 
 
 
 
MIDI in
USB to device (type A)
card reader
Microphone1 шт
Connectable pedals3 шт3 шт
Outputs
USB to host (type B)
MIDI in
headphones
USB to host (type B)
MIDI in
headphones
Linear outputs21
In box
In box
PSU
 
PSU
disc
General
Displaycolourcolour
Touch screen
Power consumption13 W
Dimensions (WxHxD)1008x101x300 mm1027x93x313 mm
Weight5.7 kg7.2 kg
Color
Added to E-Catalogaugust 2017november 2016

Rigidity

Unweighted. Keys with a very low pressing force, literally "failing" under the fingers. This option is well suited for inexpensive synthesizers with passive mechanics (see above), but is rarely used in active models — a small resistance force makes it difficult to choose the optimal pressing force.

— Semi- weighted. Medium-strength keys, not up to the hardness of a full-fledged piano, but showing noticeably more resistance than unweighted ones. This variant is most popular among instruments with active mechanics (see above) — the force on the keys provides adequate feedback and at the same time playing such an instrument does not cause any special difficulties even for those who previously dealt only with unweighted keyboards.

Weighted. Keys with high actuation force, comparable to that of a classical piano. Used only in professional hammer action instruments (see above) — high rigidity is a must for such mechanics (more precisely, for the response that it must provide).

Polyphony

The polyphony supported by a synthesizer, in other words, is the number of “voices” (tone generators) that can simultaneously sound on it.

This parameter is often described as the number of notes that can be played simultaneously on the keyboard. However, this is not entirely true due to the fact that in many timbres one note can activate several tone generators. As a result, for example, to play a chord of 3 notes in a timbre with 4 tone generators per note, polyphony of at least 3 * 4=12 voices is required. In addition, Auto Accompaniment and Preset Songs (see related sections) also use tone generators, requiring even more voices to work effectively with these features.

The minimum value for a more or less functional modern synthesizer is polyphony for 32 voices — and even then such an instrument can be used mainly for initial training and simple melodies. For a more solid application, it is desirable to have at least 50 – 60 voices, and in professional models (in particular, workstations where you have to deal with several audio tracks at once), there are models with polyphony for 150 tone generators or more.

In general, a more advanced synthesizer is likely to have more extensive polyphony, however, it is only possible to evaluate the class of an instrument by this parameter very approximately — instruments with the same number of voices can differ greatly in level. The only exception to this rule are children's synthesizers (see "T...ype"), which support up to 20 voices.

Built-in timbres

The number of built-in sounds provided in the synthesizer.

The number of timbres is often described as the number of instruments that a given model can imitate. However, this is not entirely true — rather, this parameter can be called "the number of instruments and sound effects." For example, the same instrument — an electric guitar — with different "gadgets" (distortion, overdrive) will sound differently, and in the synthesizer each such gadget will be considered a separate timbre. The “drums” timbre usually combines different types of drums and other percussion instruments — in other words, it allows you to portray both the “bass drum” and the cymbals without switching settings, just by pressing the desired keys. And some timbres may not have analogues among real instruments at all.

The more built-in timbres, the more extensive the possibilities of the synthesizer, the more diverse the sounds that can be extracted from it. At the same time, in high-end models like workstations (see "Type"), this number can reach 1000 or even more.

Tempo change

The range in which you can change the tempo of the programme played by the synthesizer — auto accompaniment, lesson tune (see above), metronome (see below), recorded sample, etc.

Pace is measured in beats per minute. Changing it allows you to adjust the speed of the synthesizer to the specifics of the situation — for example, slightly slow down the tutorial if it is too hard to master at the initial pace. The wider the range of tempo adjustment, the more options the musician has to choose from, especially in the area of very slow and very fast tempos.

Note that the traditional range of musical tempos covers values from 40 beats / min (“grave”, “very slowly”) to 208 beats / min (“prestissimo”, “very fast”), however, in synthesizers it can be more extensive — for example, 30 – 255 bpm.

Metronome

The presence of a built-in metronome in the design of the synthesizer.

A metronome is a device that produces sharp sound signals (beats) at certain short intervals specified by the user. In music, such a device is used primarily to maintain a given tempo. A metronome can be useful both for a beginner musician, for developing a sense of rhythm, and for a professional, for example, when learning a new melody, especially if it is to be played without accompaniment and you will need to maintain the rhythm yourself. In addition, the sound of the metronome can also be used as an effect in musical compositions.

Vocoder

In a very simplified way, a vocoder can be described as a device that allows you to combine the sound of a voice with the sound of another instrument. In more detail, the vocoder allows you to transfer the properties of the voice to the signal of another timbre; in this case, the voice plays the role of a modulator, and the other timbre plays the role of a carrier. Due to this, various interesting effects can be achieved: give a live voice the intonation of a “robot”, create the effect of a “speaking” instrument (guitar, piano, etc.), supplement the performer’s own voice with a synthesized “choir”, etc. Technically, even another instrument can be used instead of a voice as a modulating signal — for example, you can combine drums with a guitar or a piano with a trumpet. However, in fact, it is the voice coming from an external microphone that is most often used as a modulator (although it would not hurt to clarify the specific functionality of this module separately).

Fine tuning

The ability to fine-tune the synthesizer by sound frequencies. Often, such models also indicate the range in which such adjustment can be carried out.

The standard tuning, which is used by default in all synthesizers, is designated as “440 Hz” — this is the frequency of the “la” note of the first octave, as well as the standard frequency of the tuning fork, all other notes are tuned to it. With fine tuning, the musician can set a different base frequency, raising or lowering the overall tone of the synthesizer. At the same time, unlike the transposition described above, in this case the frequency does not change in steps (by tones-semitones), but smoothly, with an accuracy of a hertz or even a tenth of a hertz. Such an opportunity can be useful in some non-standard situations — for example, if you have to accompany a guitarist whose instrument is tuned slightly higher or lower than the standard, and for one reason or another it is impossible to change the guitar's tuning.

Inputs

— mini-Jack (3.5 mm). Line-level analogue audio input using a 3.5mm mini-jack. The line input itself is used to connect an external analogue audio signal to the synthesizer — for example, from a computer sound card. The use of such a connection can be different: playing accompaniment through the built-in speakers of the instrument, switching the signal to an external amplifier with “mixing” the sound of the synthesizer itself into it, etc. Specifically, the 3.5 mm mini-Jack connector is small in size, it is popular mainly in portable equipment and inexpensive stationary devices — “serious” audio equipment is usually equipped with more reliable connectors, like Jack (see below). As a result, an input with this type of connector is typical mainly for entry-level synthesizers.

— Jack (6.35 mm). Line-level analogue audio input using a 6.35 mm jack. By purpose, such an input is completely similar to the input with a 3.5 mm mini-Jack jack described above, however, the Jack connector is larger, provides a more reliable and high-quality connection and is considered more suitable for stationary audio equipment, especially high-end ones. Therefore, in synthesizers of an average and advanced level, usually, this type of line input is used. At the same time, we note that a 3.5 mm plug can be connected to a 6.35 mm jack using a simple adapter.

— Digital. Input for connecting to a digital audio signal synthesizer. It is similar in purpose to the linear interfaces descri...bed above, but differs both in signal format and in connector type — most often it is a coaxial S / P-DIF interface using an RCA connector, although other options are possible. Digital outputs are quite popular both in professional audio equipment and in home appliances like PCs and even TVs, so such an input may be useful.

— MIDI. MIDI is originally a digital signal format used in electronic musical instruments. Each key pressed on the synthesizer gives just such a signal: it contains data on the duration, force and speed of pressing, as well as the note number, and based on the control signal (MIDI event), the “hardware” of the synthesizer generates the desired sound. Accordingly, the MIDI input allows the synthesizer to receive MIDI events from external electronic musical devices — other synthesizers, MIDI controllers, etc. This connection can be useful, for example, if the external instrument does not have the desired timbre; in addition, many synthesizers are capable of recording received MIDI signals. In some cases, the possibility of switching such a signal via MIDI thru may also be useful (see "Outputs").

USB (type A). A classic USB connector that allows you to connect various external devices to the synthesizer — primarily flash drives and other drives, other peripherals are rarely supported. The features available when working with a flash drive depend on the general functionality of the synthesizer and may be different in different models. So, some instruments are capable of playing music from such a carrier, which plays the role of accompaniment for the main part — this can be more convenient than using auto accompaniment. Others are able to record music on a flash drive. It may also include updates to the Voice Set and/or Auto Accompaniment Styles (see above), firmware updates, etc.

Card Reader. A slot for reading memory cards, most often SD: this is a universal format widely used in many types of modern electronics. Like a USB flash drive (see above), the card reader can be used for different purposes — most often for playing musical accompaniment or recording music, but there are other options (loading additional timbres, updating firmware, etc.).

Microphone

The number of microphone inputs provided in the design of the synthesizer.

Microphones are mainly used for working with voice or recording sound samples (see "Sampling"). At the same time, in high-end models like professional instruments and workstations (see "Type"), there may be more than one microphone input — for example, for simultaneous recording of two vocalists, recording a sample from several sources on the fly, or recording stereo sound from a pair of microphones . At the same time, such tasks are quite specific and rare, and for most modern synthesizers one microphone is enough (if there is such an input at all).
Roland FA-06 often compared
Korg Krome-61 often compared