Dark mode
USA
Catalog   /   Camping & Fishing   /   Fishing   /   Boat Motors

Comparison Parsun T9.8BMS vs Mercury 9.9M

Add to comparison
Parsun T9.8BMS
Mercury 9.9M
Parsun T9.8BMSMercury 9.9M
from $1,276.56 up to $1,296.00
Outdated Product
from $1,802.56 up to $2,798.16
Outdated Product
TOP sellers
Applicationboatboat
Motor typepropellerpropeller
Motor
Engine typepetrolpetrol
Motor duty cycle2-stroke2-stroke
Maximum power9.8 hp9.9 hp
Maximum power7.2 kW7.3 kW
Maximum revolutions6000 rpm6000 rpm
Number of cylinders2 pcs2 pcs
Capacity169 cm3262 cm3
Piston diameter50 mm60 mm
Piston stroke43 mm46 mm
Coolingliquidliquid
Exhaust systemabove propellerthrough the propeller
Fuel system
Fuel system typecarburetorcarburetor
Fuel tankexternalexternal
Fuel tank volume12 L25 L
Recommended fuelAI-95 gasolineAI-95 gasoline
Drive unit
Gear ratio2.082
Propeller screw3-bladed3-bladed
Gear
forward
neutral
reverse
forward
neutral
reverse
Equipment
Transom height (deadwood)381 mm381 mm
Control systemtillertiller
Launch typemanualmanual
Leg lift (trim)manualmanual
Motor revolutions limitation
General
Dimensions992х842х336 mm
Weight26 kg35 kg
Added to E-Catalogjune 2015june 2015

Maximum power

The maximum operating power of the outboard motor, expressed in horsepower.

Horsepower (hp) has traditionally been used primarily to refer to the power of internal combustion engines, including gasoline engines (see "Engine type"). However, in outboard motors, these units are also used for electric models (see ibid.). This is due to the fact that the majority of gasoline engines are on the market, and boat manufacturers prefer to indicate the maximum recommended engine power in “horses”.

The general patterns when choosing outboard motors in terms of power are as follows. On the one hand, a more powerful unit will allow you to develop more speed and is better suited for a heavy boat (see "Maximum boat weight"). On the other hand, weight, dimensions, cost and fuel/energy consumption also directly depend on power. Therefore, it does not always make sense to chase the maximum performance.

In addition, the choice of motor for maximum power also depends on the characteristics of the craft on which it is planned to be used. It is not worth exceeding the recommended power stated in the specifications — firstly, the boat transom may not be designed for a heavy large-sized unit, and secondly, the boat itself may not be suitable for acceleration to high speeds. There are also more specific recommendations. For example, from the point of view of efficiency and safety, the engine power at the level of 60 – 80% of the ma...ximum specified in the characteristics of the boat is considered optimal. Lower values may be useful if economy and low noise level are important to you, and higher values if high speed and acceleration dynamics are key points.

There is one more specific point associated with this parameter: most often, the characteristics indicate the power output directly to the propeller, however, some manufacturers (mostly east european) can go for a little trick, indicating the power on the main motor shaft. When power is transferred to the screw, losses inevitably occur, so the useful power of the motor in such a case will be less than claimed. Thus, when choosing and comparing, it's ok to clarify what kind of power is meant in the characteristics — on the propeller or on the shaft.

Maximum power

The maximum operating power of the outboard motor, expressed in kilowatts.

The practical value of motor power is described in detail in “Maximum power" is higher. Here we note that the kilowatt (derivative of watt) is just one of the units of power used in fact along with horsepower (hp); 1 HP ≈ 735 W (0.735 kW). Watts are considered the traditional unit for electric motors (see "Engine Type"), but for a number of reasons, outboard motor manufacturers use this designation for gasoline models as well.

Capacity

The working volume of a gasoline outboard engine (see "Engine type"). This term usually means the total working volume of the cylinders.

The larger this value, the higher the motor power, usually (see the relevant paragraph). At the same time, with an increase in the working volume, fuel consumption, weight and dimensions of the unit also increase; and power depends not only on this indicator, but also on a number of other factors — ranging from the number of strokes (see "Engine duty cycle") or the presence of turbocharging (see below) and ending with specific design features. Therefore, situations are not excluded when a smaller engine will have more power, and vice versa.

Piston diameter

The diameter of a single piston in a gasoline (see "Engine type") outboard motor. In most cases, this parameter is purely reference; situations where data on the piston diameter is really needed are extremely rare — usually during the repair or maintenance of the engine.

Piston stroke

The working stroke is the distance between the two extreme positions of the piston in a gasoline (see "Engine type") outboard motor. In most cases, this parameter is purely reference; situations where such data is really needed are extremely rare — usually during the repair or maintenance of the engine.

Exhaust system

The design of the exhaust system in a gasoline outboard motor (see “Engine type”), more precisely, the method of exhaust gases used in this system.

Above the screw. This category includes two types of engines. The simplest option is when exhaust gases are emitted directly into the air. Such systems are extremely simple and cheap, but the exhaust can create a noticeable inconvenience for people in the boat (not only because of the gases, but also because of the rather high noise level); therefore, they are found only in the simplest outboard motors, and even then quite rarely. A more common option is to release exhaust gases into the water above the propeller (most often through the so-called anti-cavitation plate — a flat ledge above the propeller). Such systems are more comfortable than "air" ones, while they are simpler and cheaper than propeller exhaust (see below), although they are still considered less technically advanced.

Through the screw. In systems of this type, the exhaust is led into the water directly through the propeller hub; in fact, the position of the exhaust pipe coincides with the axis of rotation. This reduces the noise level compared to systems using exhaust over the propeller, and also slightly increases power and traction characteristics. The downside of these advantages is the design complexity and, accordingly, the high cost.

Fuel tank volume

The total volume of the fuel tank provided in the design or delivery set of the outboard motor (depending on the type of tank — see "Fuel tank").

The larger the capacity of the fuel tank, the longer the engine will be able to work without refueling, the less often it will be necessary to replenish the fuel supply in the tank. On the other hand, volumetric tanks have appropriate dimensions and weight, especially when filled; the latter is especially critical for motors with built-in tanks (see above).

Gear ratio

The gear ratio describes how fast the propeller of the outboard motor rotates relative to the speed of rotation of its shaft. For example, a gear ratio of 2 means that for each revolution of the shaft, the screw, in turn, makes two revolutions (that is, it rotates twice as fast). In modern outboard motors, this parameter, in fact, is purely reference, because. the practical characteristics of the unit (power, traction, etc.) depend on many design features and are practically not related to the gear ratio.

Motor revolutions limitation

The presence of the motor rev limiter.

This function is most often implemented in the form of an automatic system that prevents overloads and overheating of the engine: when the temperature rises critically, fraught with overheating, the automation reduces the engine speed, allowing it to cool down (or at least not heat up further). Of course, when the system is triggered, the speed of movement decreases, but this can hardly be considered a serious nuisance compared to a motor breakdown.
Parsun T9.8BMS often compared
Mercury 9.9M often compared