Dark mode
USA
Catalog   /   Tools & Gardening   /   Power Tools   /   Electric Planers

Comparison Interskol R-110/1100M 49.1.0.12 vs Makita 1911B

Add to comparison
Interskol R-110/1100M 49.1.0.12
Makita 1911B
Interskol R-110/1100M 49.1.0.12Makita 1911B
from $100.56 up to $120.44
Outdated Product
Compare prices 2
User reviews
0
0
11
TOP sellers
Main
Extended platform. Processing width 110 mm. Parallel stop.
Specs
Power consumption1100 W840 W
Rotation speed16000 rpm16000 rpm
Planing width110 mm110 mm
Planing depth3 mm2 mm
V-grooves11
Knivessingle sidedsingle sided
Dust removalunidirectionalunidirectional
Features
soft start
edge guide
stationary installation
 
 
 
General
Power sourcemains (230 V)mains (230 V)
Noise level103 dB97 dB
Power cord length5 m
Dimensions365x160x172 mm
Weight4.5 kg4.3 kg
Added to E-Catalognovember 2013november 2013

Power consumption

The total power consumed by the electric planer during operation. The more powerful the tool, the generally higher its productivity and the better it is suitable for large volumes of work and/or hardwoods. Here, however, it must be taken into account that the effective power (the power supplied by the unit directly to the working tool) is anyway lower than the consumed one, but it is far from always indicated. Therefore, it is quite possible to compare different models with each other precisely in terms of power consumption.

Note that more power means higher electricity consumption, and also, most often, more weight and cost of the tool. Therefore, it does not always make sense to chase the most powerful units. So, for occasional use and small volumes of work, a power of 500-600 W is considered quite sufficient; for regular work on relatively soft wood, 700-800 W is enough, and professional models have a power of more than 1000 W.

Planing depth

The greatest thickness of the layer of material that the planer can remove in one pass (most often the design provides for depth adjustment). The larger this parameter, the more performant the tool will be and the better it will be suitable for large-scale work. On the other hand, in fact it is rarely necessary to remove a large amount of material at a time, and tools capable of this require powerful (and therefore expensive) motors. Therefore, in most consumer-level models, the planing depth does not exceed 2 mm; more "deeper" units, usually, belong to the professional class.

Features

Soft start. The presence of a soft start function in the electric planer.
By themselves, the electric motors used in modern planers "start" very abruptly. This leads to jerks of the tool at start-up, due to which it is possible to spoil the workpiece or even drop the unit, which is fraught with injury. In addition, during a normal, non-soft start, the motor consumes a very high current at the moment of start, which leads to voltage surges in the network and an increased load on it. To avoid this, some tools are equipped with a soft start system — an electronic unit that limits starting currents. Due to such electronics, the engine enters the “slowly” mode, without jerks and power surges, which positively affects both the state of the network and the safety of use.

Maintain momentum. The presence of the function of maintaining speed in the electric planer.
This function is designed to keep the motor speed constant regardless of the load on the blades. Without speed maintenance, this speed decreases as the load on the tool increases and increases when the knives are released. At the same time, the features of the use of planers are such that in “problem” areas (knots, uneven wood, etc.), where the resistance increases, high speed is just needed for high-quality processing, and with low resistance, it is not necessary to keep the speed particularly. Accordingly, the electronics responsible for maintaining...the speed monitors the resistance of the material and automatically regulates the power supplied to the engine: as the load increases, the power also increases, and vice versa. This not only allows you to cope with difficult areas, but also improves the quality of processing in general, reduces wear, and also allows you to use electricity more rationally — the planer "takes" a lot of electricity only when it is really needed.

— Brushless motor. The presence of a brushless (brushless) electric motor in the design of the tool. As the name suggests, this electric motor does not have a brushed commutator used in traditional electric motors. This design is more expensive, but it offers a number of advantages: in particular, brushless motors consume less energy, heat up less, have a lower noise level, and also practically do not spark, which makes it easier to work with a tool in high fire hazard conditions.

— Curved outsole. The presence of a curved sole in the design of the tool. In this case, a sole is meant that is curved in length — in such a way that its front and rear edges are above the middle. Such tools are not suitable for general planing, but they do a good job with some specific jobs. For example, when removing bark from large logs, the curved sole does not cling to knots and other irregularities, and the tool moves freely along the surface to be treated. Actually, the removal of bark from logs is often stated in such tools as the main purpose. However, the matter is not limited to this, the curved sole can also be useful for other tasks — for example, processing concave parts, where a conventional flat planer could not reach the surface. Anyway, curved planers are a rather highly specialized tool, and therefore are extremely rare.

— Quarter sampling. The presence of the function of sampling a quarter in the design of the electric planer. The selection of a quarter can be described as cutting a groove along the edge of the board — thus, instead of a protruding corner, a rectangular recess is obtained. For such work, planers use a special device — a parallel stop: it allows you to move the tool strictly along the edge of the board, ensuring accurate cutting of a quarter groove. If in this model the possibility of sampling a quarter is claimed, this, usually, means that the parallel stop is initially supplied in the kit.
Theoretically, a quarter can be sampled with almost any planer, without a special stop. However, in fact, in order to achieve this more or less tolerable quality, a very high level of skill is required, while even a beginner can cope with such a task with the presence of a parallel fence.

— Folding shoe. The presence of a folding shoe in the design of the tool.
The drop shoe is an additional stand designed to ensure that the planer can be safely placed directly on the sole during non-working hours. The need for such a function is primarily due to the fact that the planer knives, after turning off the engine, continue to rotate by inertia for some time — and this time can be quite significant, on the order of 20 – 30 s. Without a special stand, the planer would either have to be held in hands (which is not very convenient) or laid on its side (which is not always accessible and not very safe — not all tools can lie stably in this position). And if there is a stand, the tool can be placed with the sole down, without fear of spoiling the surface under it: the shoe slightly raises the sole, and the knives rotate in the air without touching the supporting surface.
Such a stand is usually installed in the back of the sole and is made spring-loaded: while the planer is in the air, the shoe is folded down to its working position, and to fold it, you need to lightly press the tool, moving it forward. This minimizes the chance of a planer with unstopped knives resting on the support when the shoe is folded.

— Stationary installation. A planer with the possibility of stationary installation can be turned upside down and secured in this position. When working, accordingly, the user will have to move not the tool over the workpiece, but vice versa — the workpiece over the tool. In other words, the planer in this position actually turns into a compact planer. This format of work is especially convenient if the weight of the workpiece is small, and it is more convenient to hold it in your hands than a massive planer. And if you need to process many small parts at once, a stationary installation can be a real salvation.
Note that the method of fixing can be different: some models are equipped with their own stand, others are fixed on the workbench using a special clamp. The specific installation method for the selected model needs to be specified separately, as well as the presence of the aforementioned stand or clamp in the kit: usually the planer is immediately supplied with everything necessary for stationary placement, but there may be exceptions.

Noise level

The maximum noise level produced by the planer during operation. The lower this indicator, the more comfortable the use of the tool, the less inconvenience it creates for both the user and others. Note that the noise level is measured in decibels, and this is not a linear unit — in other words, sounds with a difference of several dB in volume can differ significantly. A few examples for comparison: 75 dB noise is approximately equivalent to a scream, 80 dB is a motorcycle engine, 85 dB is a loud scream, 90 dB is the sound of a freight car moving at a distance of 5-6 m, 95 dB is the noise inside a subway car.

Power cord length

The length of the network cable can tell you how far from the outlet you can operate the device. Therefore, for domestic use, it is more relevant to choose models with a short cord, for construction work or use in production, in the garage a longer cable is better.
Interskol R-110/1100M 49.1.0.12 often compared
Makita 1911B often compared