Scan depth
the
maximum depth at which the sonar locator (see "Type") is able to operate effectively — in other words, how deep underwater the device is able to "see".
It is worth choosing an echo sounder according to this parameter, taking into account the actual depths at which it is planned to be used. Of course, this does not place a certain margin, but within reasonable limits (15-20%, less). For example, it hardly makes sense to specially take a model with a scanning depth of 200 m for a lake with pits of 30-40 m — such devices are expensive, while there will simply be nowhere to realize their full potential, and a powerful signal can also scare away the fish. But for marine or oceanic applications, a depth of a kilometer or more may be required; the most advanced echo sounders are quite capable of providing it.
Number of beams of radiation
The number of individual beams of radiation emitted by the device with the echo sounder function (see "Type"). The general principle is as follows: the more rays, the more advanced the device is considered and the more additional features it provides. Specific features may be:
— 1. Single-
beam echo sounders are the simplest variety; accordingly, one of their key advantages is low cost. On the other hand, the shortcomings of any beam — both narrow and wide — are fully realized in them (for more details, see "Total angle of radiation"), and there is no question of a detailed determination of the position of individual detected objects (for example, fish).
— 2. In models with
two beams, these beams most often have a common axis, but differ in coverage angle: one is made narrow, directly for measuring depths, the other is wider, for searching for fish and other individual objects. Thus, this option combines the advantages of beams of large and small widths. However such an echo sounder is not capable of fixing the location of the fish relative to the boat.
— 3. Three-
beam echo sounders have all the capabilities of the two-beam echo sounders described above, and in addition, they are also able to determine the location of a fish or other object relative to the boat (right or left).
Number of frequencies
The number of individual radiation frequencies that can be operated by a device with echo sounding function (see "Type").
The features of the frequencies themselves are described in detail below, but here we note that different models may provide different options for distributing frequencies over individual beams (see "Number of radiation beams"). So, in some devices, each beam has its own frequency, in others, individual emitters can be switched, choosing the best option depending on the characteristics of the situation. In general, more frequencies indicate greater versatility, but it significantly affects the price.
Radiation frequency
The frequency(s) of radiation at which the device with the echo sounder function is capable of operating (see "Type").
The higher the frequency, the better the resolution and noise immunity of the device, the better it is suitable for working at high speeds, but the range and coverage suffer. Low-frequency (up to 200 kHz) sensors, on the contrary, "reach" deep and cover a wide angle, but are sensitive to interference and do not work well with fine terrain details and small objects. Accordingly, the first option is considered optimal for shallow depths and high-precision topographic measurements, while the second option is for deep water bodies, as well as for searching for fish and other tasks that require wide coverage.
Models with several radiation beams (see “Number of radiation beams”) often provide different frequencies for individual beams, which allows you to combine the advantages of different options in one device and compensate for their disadvantages.
Total radiation angle
The angle covered during operation by the transducer of the echo sounder (or an instrument with such a function, see "Type").
Technically, the
wider the angle, the better the echo sounder is suitable for finding fish and other underwater objects, because. a large coverage area reduces the likelihood of missing prey. On the other hand, to accurately determine the depth, the beam must be as narrow as possible. This is due to the fact that the depth is determined by the maximum protruding point that fell under the beam; thus, if the size of the hole at the bottom is smaller than the spot from the beam, the device simply will not notice this hole. The smaller the angle (and, accordingly, the projection of the beam onto the bottom) — the less likely this phenomenon is.
However, it should be taken into account that all of the above is unambiguously true only for single-beam echo sounders (see "Number of radiation beams"). But multibeam models, usually, combine beams of different widths, thus compensating for the shortcomings of narrow and wide angles. In them, the total radiation angle describes only the dimensions of the space covered by the device.