Dark mode
USA
Catalog   /   Camping & Fishing   /   Air Guns & Weapons   /   NVDs and Thermal Imagers

Comparison Pulsar Challenger GS 1x20 vs Pulsar Challenger GS 2.7x50

Add to comparison
Pulsar Challenger GS 1x20
Pulsar Challenger GS 2.7x50
Pulsar Challenger GS 1x20Pulsar Challenger GS 2.7x50
from $301.40 up to $367.04
Outdated Product
from $298.48 up to $304.88
Outdated Product
TOP sellers
Typenight Vision Devicenight Vision Device
Form factormonocularmonocular
Detection range200 m150 m
Principle of operationEOCEOC
EOC generationI+I+
Optical specs
Optical magnification1 x2.7 x
Lens diameter20 mm50 mm
Focal length27 mm70 mm
Resolution42 lines/mm42 lines/mm
Field of view at 100 m65.5 m23 m
Angular field of view36 °13 °
Min. focus distance1 m1.8 m
Offset of the exit pupil12 mm12 mm
Diopter adjustment
IR illuminator specs
Built-in IR illuminator
Wavelength805 nm805 nm
Invisible emitter spectrum
More features
More features
dust-, waterproof
shockproof
ergonomic eyecups
dust-, waterproof
shockproof
ergonomic eyecups
General
Helmet-mask included
Power source1xCR1231xCR123
Operating temperature range-20 °C ~ +40 °С-20 °C ~ +40 °С
Dimensions163x57x79 mm202x79x57 mm
Weight500 g500 g
Added to E-Catalogoctober 2014october 2014

Detection range

The greatest distance at which a night vision device is capable of detecting individual objects.

The methods by which manufacturers determine this parameter may vary in detail, but the general principle is the same. Usually, the distance is indicated at which, with an illumination of 0.05 lux (a quarter of the moon) and a medium-contrast background, a rather large object can be seen — for example, a human figure with a height of about 170 cm is most often taken. of this object, but only to notice the very fact of its presence. Simply put, a detection range of, say, 200 m means that “something that looks like a person” can be seen in such a device at a distance of 200 m, but individual parts (head, hands) cannot be disassembled.

It is also worth noting that in fact this parameter is highly dependent on the characteristics of the situation. For example, a dark object on a very light background will be visible further, and on a dark one it may not be noticeable even up close; a similar phenomenon is observed for thermal imagers (see "Type"), only regarding the difference in temperature, and not in colours.

Optical magnification

The degree of image magnification that a night vision device is able to provide without digital image processing, solely due to the optical system. Such an increase is considered to be preferable to digital, because. it does not impair the clarity of the visible image; and for models based on image intensifier tubes (see "How it works"), this is generally the only available option.

Theoretically, the higher the magnification, the greater the detection range (see above), since a powerful increase allows you to see smaller objects. However, it does not always make sense to chase the maximum performance. The fact is that with increasing magnification, the angular field of view decreases and the minimum focus distance increases (see both below), which can create problems at close range. It is also worth noting that a high degree of magnification adversely affects the luminosity of the entire system — as a result, the actual detection range in complete darkness may be higher for a device with a lower magnification, because. it "catches" more light. Yes, and this parameter affects the cost accordingly.

Note that night vision devices, unlike classical binoculars and monoculars, most often have a fixed magnification. Models with the possibility of smooth adjustment are almost never found, and the only option is to use additional nozzles (see "Form factor").

Now on the market are night vision devices with the following optical zoom: 1x, 2 – 3x, 3.1 – 4x, > 4x

Lens diameter

The diameter of the entrance lens that the lens of the night vision device is equipped with.

This parameter is one of the most important for any optical device, including night vision devices: the larger the lens, the more light (or infrared radiation) enters it and the more sensitive the optics are, all other things being equal. The downside of this is an increase in the size, weight and cost of the device. In addition, do not forget that various tricks and additional technologies can be used in the design; therefore, by itself, a large lens is far from always an unambiguous indicator of a high class.

Focal length

The focal length of a night vision device. This term means such a distance from the optical centre of the lens to the photocathode of the image intensifier tube or the matrix of a digital device(see "Operation principle"), at which a clear image is obtained on the photocathode/matrix.

In general, long focal lengths are characteristic of optical systems with a high degree of optical magnification (see above). However, in the case of night vision devices, this dependence is not rigid — it is simply easier to ensure a high magnification with long-focus optics. In fact, this means that models with the same focal length can differ markedly in magnification. But what this indicator directly affects is light transmission: other things being equal, longer optical systems transmit less light, which negatively affects the capabilities of the device. This is also true for thermal imagers (see "Type"), because their working infrared range in this case also obeys the general laws of optics.

Field of view at 100 m

The size of the area visible in the night vision device from a distance of 100 m — in other words, the largest distance between two points at which they can be seen simultaneously from this distance. It is also called "linear field of view". Along with the angular field of view (see below), this parameter characterizes the space covered by the optics; at the same time, it more clearly describes the capabilities of a particular model than data on viewing angles.

Angular field of view

The angle of view provided by a night vision device — that is, the angle between the lines connecting the observer's eye with the two extreme points of visible space. Wide viewing angles allow you to cover a large area, but the magnification factor (see above) is low; in turn, increasing the magnification leads to a decrease in the field of view.

Min. focus distance

The smallest distance to the observed object, at which it will be clearly visible through the night vision device. For normal use of night vision devices, it is necessary that this distance does not exceed the minimum expected distance to the objects in question; thus, it must be borne in mind that the higher the magnification factor (see above), the greater the focus distance, usually.

Helmet-mask included

The presence of a helmet-mask in the delivery set of the night vision device.

The helmet-mask is a hoop with a system of belts and a mount for the device. This design allows you to wear night vision devices on your head, due to which your hands remain free when working with the device. At the same time, the thickness of the hoop and belts is usually small, which allows them to be worn under a headdress.

It should be noted that the possibility of installation on a helmet-mask is found in many NVG models, however, the helmet-mask itself is far from always supplied in the kit. Buying it together with the device is much easier than picking it up separately.
Pulsar Challenger GS 1x20 often compared
Pulsar Challenger GS 2.7x50 often compared