Dark mode
USA
Catalog   /   Computing   /   Networking   /   Wi-Fi Equipment

Comparison Asus ROG Rapture GT-AX11000 vs Asus RT-AX88U

Add to comparison
Asus ROG Rapture GT-AX11000
Asus RT-AX88U
Asus ROG Rapture GT-AX11000Asus RT-AX88U
Compare prices 3Compare prices 1
User reviews
0
0
0
1
TOP sellers
Main
11Gbps 802.11ax Wi-Fi router with 2.5G Ethernet port, OFDMA, Beamforming, Target Wait Time, GameFirst, Game Boost, port forwarding, Game Radar and VPN Fusion, dedicated range for gaming.
The router with the Wi-Fi 802.11ax standard provides speeds of 1148 and 4804 Mbps in the 2.4 and 5 GHz bands, respectively. Gamers Private Network technology speeds up the delivery of online game packages.
AiMesh technology allows you to connect other AiMesh-enabled routers to a single wireless network and thereby expand its coverage.
Product typegaming routergaming router
Data input (WAN-port)
Ethernet (RJ45)
Wi-Fi
3G modem (USB)
4G (LTE) modem (USB)
Ethernet (RJ45)
Wi-Fi
3G modem (USB)
4G (LTE) modem (USB)
Wireless Wi-Fi connection
Wi-Fi standards
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 6 (802.11ax)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 6 (802.11ax)
Frequency band
2.4GHz
5 GHz
2.4GHz
5 GHz
Operating rangesthree-channel (2.4 GHz and 5 GHz in 2 channels)dual-band (2.4 GHz and 5 GHz)
Wireless speed 2.4 GHz1148 Mbps1148 Mbps
Wireless speed 5 GHz9608 Mbps4804 Mbps
Bandwidth160 MHz160 MHz
Connection and LAN
WAN
1 port
1 Gbps
1 port
1 Gbps
LAN
5 ports
1 Gbps, 2.5 Gbps
8 ports
1 Gbps
USB 3.2 gen122
Antenna and transmitter
Number of antennas84
Antenna typeexternalexternal
MU-MIMO
Detachable antenna
Gain4 dBi
2.4 / 5 GHz antennas4
Transmitter power25 dBm
Hardware
CPU cores44
Clock Speed1.8 GHz1.8 GHz
RAM1 GB1 GB
Flash memory256 MB256 MB
Functions
Features
load balancing (Dual WAN)
channel reservation
Link Aggregation
Amazon Alexa
NAT
bridge mode
repeater
MESH mode
Beamforming
firewall
CLI (Telnet)
load balancing (Dual WAN)
channel reservation
Link Aggregation
Amazon Alexa
NAT
bridge mode
repeater
MESH mode
Beamforming
firewall
CLI (Telnet)
More features
DHCP server
FTP server
file server
media server (DLNA)
print server
torrent client
VPN
DDNS
DMZ
DHCP server
FTP server
file server
media server (DLNA)
print server
torrent client
VPN
DDNS
DMZ
Security
Safety standards
WPA
WEP
WPA2
802.1x
WPA
WEP
WPA2
802.1x
General
Lighting+
Dimensions240x240x60 mm300x188x60 mm
Weight1718 g1010 g
Color
Added to E-Catalogaugust 2019june 2019

Operating ranges

The number of wireless bands and channels supported by the router. Specified only for models that work with more than one range.

Dual-band (2.4 GHz and 5 GHz). Devices that simultaneously support two popular communication bands — 2.4 GHz and 5 GHz — in the "one communication channel per band" format. This ensures compatibility with most Wi-Fi standards (see above), and in some cases also has a positive effect on the quality of communication. For example, a Wi-Fi adapter (see "Device Type") with this feature may provide the ability to evaluate the load on both bands and automatically select the less loaded one.

Three-channel (2.4 GHz and 5 GHz in 2 channels). An improved version of the dual-band operation format: in the 5 GHz band, communication is carried out on two channels. This allows, for example, to “raise” three wireless connection channels on one router at once (three visible networks in the list of wireless networks) and achieve even higher throughput. The advantages of this format are especially noticeable when the router works simultaneously with several wireless devices.

Tri-band (2.4 GHz, 5 GHz, 60 GHz). The most "omnivorous" type of modern Wi-Fi equipment, compatible with all popular standards — from the outdated 802.11 b / g to the relatively new 802.11 ad. Also, the abundance of ranges contributes to an increase in spee...d, especially when working with multi-range devices.

Wireless speed 5 GHz

The maximum speed supported by the device when communicating wirelessly in the 5 GHz band.

This range is used in Wi-Fi 4, Wi-Fi 6 and Wi-Fi 6E as one of the available bands, in Wi-Fi 5 as the only one (see "Wi-Fi Standards"). The maximum speed is specified in the specifications in order to indicate the real capabilities of specific equipment - they can be noticeably more modest than the general capabilities of the standard. Also, in fact, it all depends on the generation of Wi-Fi. For example, devices with Wi-Fi 5 support can theoretically deliver up to 6928 Mbit (using eight antennas), with Wi-Fi 6 support up to 9607 Mbit (using the same eight spatial streams). The maximum possible communication speed is achieved under certain conditions, and not every model of Wi-Fi equipment fully satisfies them. Specific figures are conditionally divided into several groups: the value up to 500 Mbit is rather modest, many devices support speeds in the range of 500 - 1000 Mbit, indicators of 1 - 2 Gbps can be attributed to the average, and the most advanced models in class provide a data exchange rate of over 2 Gbps.

LAN

In this case, LAN means standard network connectors (known as RJ-45) designed for wired connection of LAN devices — PCs, servers, additional access points, etc. The number of ports corresponds to the number of devices that can be directly connected to wired equipment. way.

In terms of speed, 100 Mbps (Fast Ethernet) and 1 Gbps (Gigabit Ethernet) are the most popular options today. At the same time, thanks to the development of technology, more and more gigabit devices are being produced, although in fact this speed is critical only when transferring large amounts of information. At the same time, some models, in addition to the standard speed of the main LAN ports, may have a 2.5 Gbps, 5 Gbps and even 10 Gbps LAN port with increased bandwidth.

Number of antennas

The total number of antennas (of all types — see below) provided in the design of the device.

In modern Wi-Fi equipment, this indicator can be different: in addition to the simplest devices with 1 antenna, there are models where this number is 2, 3, 4 and even more. The point of using multiple antennas is twofold. Firstly, if there are several external devices per antenna, they have to share the bandwidth among themselves, and the actual communication speed for each subscriber drops accordingly. Secondly, such a design may also be required when communicating with one external device — to work with MU-MIMO technology (see below), which allows you to fully realize the capabilities of modern Wi-Fi standards.

Anyway, more antennas, usually, means a more advanced and functional device. On the other hand, this parameter significantly affects the cost; so specifically looking for equipment with numerous antennas makes sense mainly when the speed and stability of communication are critical.

Note that antennas intended for mobile communications may also be considered in this clause. So when choosing a model with support for mobile networks, it's ok to clarify this point.

Gain

Gain provided by each device antenna; if the design provides for antennas with different characteristics (a typical example is both external and internal antennas), then the information, usually, is indicated by the highest value.

Amplification of the signal in this case is provided by narrowing the radiation pattern — just as in flashlights with adjustable beam width, reducing this width increases the illumination range. The simplest omnidirectional antennas narrow the signal mainly in the vertical plane, "flattening" the coverage area so that it looks like a horizontal disk. In turn, directional antennas (mainly in specialized access points, see "Device type") create a narrow beam that covers a very small area, but provides a very solid gain.

Specifically, the gain describes how powerful the signal is in the main direction of the antenna compared to an perfect antenna that spreads the signal evenly in all directions. Together with the power of the transmitter (see below), this determines the total power of the equipment and, accordingly, the efficiency and range of communication. Actually, to determine the total power, it is enough to add the gain in dBi to the transmitter power in dBm; dBi and dBm in this case can be considered as the same units (decibels).

In general, such data is rarely required by the average user, but it can be useful in some specific situations that specialists have to deal with. Detailed calculation methods for suc...h situations can be found in special sources; here we emphasize that it does not always make sense to pursue a high antenna gain. First, as discussed above, this comes at the cost of narrowing the scope, which can be inconvenient; secondly, too strong a signal is also often undesirable, for more details see "Transmitter power".

2.4 / 5 GHz antennas

The total number of antennas in the router that can operate on both 5 GHz and 2.4 GHz frequencies. For details about the number of antennas, see "Total antennas", about the range — "Frequency range".

Transmitter power

Rated power of the Wi-Fi transmitter used in the device. If multiple bands are supported (see “Ranges of operation”) the power for different frequencies may be different, for such cases the maximum value is indicated here.

The total transmitting power provided by the device directly depends on this parameter. This power can be calculated by adding the transmitter power and the antenna gain (see above): for example, a 20 dBm transmitter coupled with a 5 dBi antenna results in a total power of 25 dBm (in the main antenna coverage area). For simple domestic use (for example, buying a router in a small apartment), such details are not required, but in the professional field it often becomes necessary to use wireless devices of a strictly defined power. Detailed recommendations on this matter for different situations can be found in special sources, but here we note that the total value of 26 dBm or more allows the device to be classified as equipment with a powerful transmitter. At the same time, such capabilities are not always required in fact: excessive power can create a lot of interference both for surrounding devices and for the transmitter itself (especially in urban and other similar conditions), as well as degrade the quality of the connection with low-power electronics. And for effective communication over a long distance, both the equipment itself and external devices must have the appropriate power (which is far from alway...s achievable). So, when choosing, you should not chase the maximum number of decibels, but take into account the recommendations for a particular case; in addition, a Wi-Fi amplifier or MESH system often turns out to be a good alternative to a powerful transmitter.

Lighting

A stylish design element for gaming and design models of Wi-Fi equipment in the form of decorative LED lighting. It can be either single colour or iridescent with colour control (RGB).
Asus ROG Rapture GT-AX11000 often compared
Asus RT-AX88U often compared