USA
Catalog   /   Computing   /   Components   /   Motherboards

Comparison Asus ROG STRIX B450-I GAMING vs Asus ROG STRIX B350-I GAMING

Add to comparison
Asus ROG STRIX B450-I GAMING
Asus ROG STRIX B350-I GAMING
Asus ROG STRIX B450-I GAMINGAsus ROG STRIX B350-I GAMING
Compare prices 1Outdated Product
TOP sellers
Featuresgaming for overclockinggaming for overclocking
SocketAMD AM4AMD AM4
Form factormini-ITXmini-ITX
Power phases76
VRM heatsink
LED lighting
Lighting syncAsus Aura SyncAsus Aura Sync
Size (HxW)170x170 mm170x170 mm
Chipset
ChipsetAMD B450AMD B350
BIOSAmiAmi
UEFI BIOS
RAM
DDR42 slot(s)2 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency3600 MHz3600 MHz
Max. memory32 GB32 GB
Drive interface
SATA 3 (6Gbps)44
M.2 connector2
/one on back of the board/
M.21xSATA/PCI-E 4x, 1xPCI-E 4x1xSATA/PCI-E 4x
M.2 SSD cooling
 /on one slot/
Integrated RAID controller
 /RAID 0, RAID 1, RAID 10/
 /RAID 0, RAID 1, RAID 10/
Expansion slots
PCI-E 16x slots11
PCI Express3.03.0
Steel PCI-E connectors
Internal connections
USB 2.011
USB 3.2 gen111
Video outputs
HDMI output
Integrated audio
AudiochipSupremeFXSupremeFX
AmplifierDual OP Amplifiers
Sound (channels)7.17.1
Network interfaces
Wi-FiWi-Fi 5 (802.11aс)Wi-Fi 5 (802.11aс)
BluetoothBluetooth v 4.2Bluetooth v 4.2
LAN (RJ-45)1 Gbps1 Gbps
LAN ports11
LAN controllerIntel I211-ATIntel I211-AT
External connections
USB 3.2 gen144
USB 3.2 gen222
Power connectors
Main power socket24 pin24 pin
CPU power8 pin8 pin
Fan power connectors32
Added to E-Catalogjuly 2018march 2018

Power phases

The number of processor power phases provided on the motherboard.

Very simplistically, phases can be described as electronic blocks of a special design, through which power is supplied to the processor. The task of such blocks is to optimize this power, in particular, to minimize power surges when the load on the processor changes. In general, the more phases, the lower the load on each of them, the more stable the power supply and the more durable the electronics of the board. And the more powerful the CPU and the more cores it has, the more phases it needs; this number increases even more if the processor is planned to be overclocked. For example, for a conventional quad-core chip, only four phases are often enough, and for an overclocked one, at least eight may be needed. It is because of this that powerful processors can have problems when used on inexpensive low-phase motherboards.

Detailed recommendations on choosing the number of phases for specific CPU series and models can be found in special sources (including the documentation for CPU itself). Here we note that with numerous phases on the motherboard (more than 8), some of them can be virtual. To do this, real electronic blocks are supplemented with doublers or even triplers, which, formally, increases the number of phases: for example, 12 claimed phases can represent 6 physical blocks with doublers. However, virtual phases are much inferior to real ones in terms of capabilities — in fact, t...hey are just additions that slightly improve the characteristics of real phases. So, let's say, in our example, it is more correct to speak not about twelve, but only about six (though improved) phases. These nuances must be specified when choosing a motherboard.

Chipset

The chipset model installed in the motherboard. AMD's current chipset models are B450, A520, B550, X570, A620, B650, B650E, X670, X670E, X870, X870E.. For Intel, in turn, the list of chipsets looks like this: X299, H410, B460, H470, Z490, H510, B560, H570, Z590, H610, B660, H670, Z690, B760, Z790, Z890.

A chipset is a set of chips on the motherboard through which the individual components of the system interact directly: the processor, RAM, drives, audio and video adapters, network controllers, etc. Technically, such a set consists of two parts — the north and sou...th bridges. The key element is the northbridge, it connects the processor, memory, graphics card and the southbridge (together with the devices it controls). Therefore, it is often the name of the north bridge that is indicated as the chipset model, and the south bridge model is specified separately (see below); it is this scheme that is used in traditional layout motherboards, where bridges are made in the form of separate microcircuits. There are also solutions where both bridges are combined in one chip; for them, the name of the entire chipset can be indicated.

Anyway, knowing the chipset model, you can find various additional data on it — from general reviews to special instructions. An ordinary user, usually, does not need such information, but it can be useful for various professional tasks.

M.2

Electrical (logical) interfaces implemented through physical M.2 connectors on the motherboard.

See above for more details on such connectors. Here we note that they can work with two types of interfaces:
  • SATA is a standard originally created for hard drives. M.2 usually supports the newest version, SATA 3; however, even it is noticeably inferior to PCI-E in terms of speed (600 MB / s) and functionality (only drives);
  • PCI-E is the most common modern interface for connecting internal peripherals (otherwise NVMe). Suitable for both expansion cards (such as wireless adapters) and drives, while PCI-E speeds allow you to fully realize the potential of modern SSDs. The maximum communication speed depends on the version of this interface and on the number of lines. In modern M.2 connectors, you can find PCI-E versions 3.0 and 4.0, with speeds of about 1 GB / s and 2 GB / s per lane, respectively; and the number of lanes can be 1, 2 or 4 (PCI-E 1x, 2x and 4x respectively)
Specifically, the M.2 interface in the characteristics of motherboards is indicated by the number of connectors themselves and by the type of interfaces provided for in each of them. For example, the entry "3xSATA / PCI-E 4x" means three connectors that can work both in SATA format and in PCI-E 4x format; and the designation "1xSATA / PCI-E 4x, 1xPCI-E 2x" means two connectors, one of which works as SATA or PCI-E 4x, and the second — only as PCI-E 2x.

HDMI output

The motherboard has its own HDMI output.

Such an output is intended for transmitting video from an integrated graphics card (see above) or a processor with integrated graphics (we emphasize that it is impossible to output a signal from a discrete graphics card through the motherboard chipset). As for HDMI specifically, it is a combined digital video/audio interface specifically designed to work with HD resolutions and multi-channel audio. Today it is the most common of these interfaces, HDMI support is almost mandatory for video devices that are compatible with HD standards.

The specific capabilities of HDMI vary by version (see below for more details), but in general they are quite impressive — even in the earliest (current today) HDMI v.1.4, the maximum resolution is 4K, and in newer standards it reaches 10K. So in motherboards, the quality of the video transmitted through such an output is often limited not by the interface capabilities, but by the graphics performance of the system.

Amplifier

Built-in audio signal amplifier in motherboards with an integrated sound card. Provides higher sound quality through headphones.

Fan power connectors

The number of connectors for powering coolers and fans provided in the motherboard. A processor cooler is usually connected to such a connector, and fans of other system components — video cards, cases, etc. can also be powered from the "motherboard"; sometimes it is more convenient than pulling power directly from the PSU (at least you can reduce the number of wires in the case). Many modern boards are equipped with 4 or more connectors of this type.
Asus ROG STRIX B450-I GAMING often compared