Static contrast
The level of static contrast provided by the TV screen.
Contrast in a general sense is the ratio in brightness between the brightest whites and the darkest blacks that the screen can produce. Other things being equal, the higher the screen contrast, the better the quality of colour reproduction and detail, the lower the likelihood that it will be impossible to see details in too bright or too dark areas of the image. Static contrast, on the other hand, describes the maximum difference in brightness that can be achieved within one frame without changing the brightness of the image — this is its difference from dynamic contrast (see below).
The values of static contrast are much lower than those of dynamic, but this characteristic is the most "honest". It is on it that the properties of the image seen on the screen at a particular moment depend, it is describes the basic properties of the screen, without taking into account the software tricks provided by the manufacturer in the hardware of the TV.
Response time
The response time can be described as the maximum time required for each pixel of the screen to change brightness, in other words, the longest time from the receipt of a control signal to the pixel until it switches to the specified mode. The actual switching time may be less — if the brightness changes slightly, it can be calculated in microseconds. However, it is the longest time that matters — it describes the guaranteed response speed of each pixel.
First of all, the frame rate is directly related to the response time (see the relevant paragraph): the lower the response time, the higher the frame rate can be provided on this sensor. However, the actual frame rate may be less than the theoretical maximum, it all depends on the TV. Also note that the overall image quality in dynamic scenes depends primarily on the frame rate. Therefore, we can say that the response time is an auxiliary parameter: the average user rarely needs this data, and in the specifications they are given mainly for advertising purposes.
Digital tuner
Types of digital tuners (receivers) provided for in the design of the TV.
Such tuners are necessary for receiving digital TV broadcasts; for normal operation, the broadcast standard must match the type of tuner (with some exceptions, see below). Note that the receivers are also available as separate devices; however, it is easier (and often cheaper) to buy a TV with a built-in tuner of the desired format. In modern TV you can find terrestrial tuners
DVB-T2, cable
DVB-C and satellite
DVB-S and
DVB-S2, here are their main features:
— DVB-T2 (terrestrial). The main modern standard for digital broadcasting. Such broadcasting has a number of advantages over traditional analogue broadcasting: it allows higher resolution and multi-channel audio transmission, with better sound and picture quality, and this quality is fully preserved until the signal weakens to a critical level. However, in some countries digital terrestrial broadcasting is just being put into operation, so it will not hurt to check the availability of DVB-T2 coverage in your area.
— DVB-C (cable). The main modern standard for digital broadcasting in cable networks. Despite the advent of the more advanced DVB-C2, it still continues to be widely used, and most likely this situation will not change for a long time.
— DVB-S (satellite). The first
...generation of the digital DVB standard for satellite broadcasting. Nowadays, it is relatively rare due to the advent of a more advanced DVB-S2, which is also backwards compatible with the original DVB-S.
— DVB-S2 (satellite). The most advanced and popular of today's digital satellite broadcasting standards. Being the heir to DVB-S, has retained compatibility with it; therefore, manufacturers often limit themselves to installing only a DVB-S2 tuner on their TVs — it allows you to receive both major satellite broadcast formats.HDMI
The number of HDMI inputs provided in the design of the TV.
HDMI is a comprehensive digital interface that allows high-definition video and multi-channel audio to be transmitted over a single cable. It is widely used in modern HD equipment — in fact, the presence of such an output is mandatory for modern media centers, DVD players, etc. Therefore, LCD TVs in the vast majority of cases are equipped with at least one HDMI port. And the presence of several such ports allows you to simultaneously connect several signal sources and switch between them; in some models, the number of HDMI can reach
4 or even more. At the same time, some manufacturers use technologies that allow you to control devices connected to the TV via HDMI from a single remote control.
HDMI version
About the interface itself, see above, and its different versions differ in maximum resolution and other features. Here are the options found in modern TVs:
— v 1.4. The oldest of the current versions, released in 2009. However, it supports 3D video, capable of working with resolutions up to 4096x2160 at 24 fps, and in Full HD resolution, the frame rate can reach 120 fps. In addition to the original v.1.4, there are also improved modifications — v.1.4a and v.1.4b; they are similar in terms of basic features, in both cases the improvements affected mainly work with 3D content.
– v 2.0. Significant update to HDMI introduced in 2013. In this version, the maximum frame rate in 4K has increased to 60 fps, and the audio bandwidth has increased to 32 channels and 4 separate streams simultaneously. Also from the innovations, we can mention support for the ultra-wide format 21:9. In the v.2.0a update HDR support was added to the interface capabilities, in v.2.0b this feature was improved and expanded.
— v 2.1. Despite the similarity in name to v.2.0, this version, released in 2017, was a very large-scale update. In particular, it added support for 8K and even 10K at speeds up to 120 fps, as well as even more expanded features for working with HDR. Under this version, its own cable was released — HDMI Ultra High Speed, all
HDMI 2.1 features are available only when using cables of this standard, although basic functio
...ns can be used with simpler cords.Additional inputs
The TV's connectivity options are based not only on wireless technologies (described above), but also on a wired connection. In particular, additional video transmission can be carried out through
VGA,
composite AV connectors . Some of them also provide sound transmission, in addition to which there may be a
mini-Jack (3.5 mm) and other ports for communication with external devices. More about them:
—
USB. Connector for connecting external peripheral devices. The presence of USB means at least that the TV is capable of playing content from flash drives and other external USB media. In addition, there may be other ways to use this input:
recording TV programs to external media, connecting a WEB camera (see same paragraph), keyboard and mouse to use the built-in browser and other software, etc. The specific set of options depends on the functionality of the TV, it should be specified separately in each case.
—
Card reader. A device for working with memory cards, most often in SD format. The main use of the card reader is to play content from such cards on a TV; such an opportunity is especially convenient for viewing materials from photo and video cameras — it is in such devices that memory cards are widely used. There may be other ways to use this function — fo
...r example, recording from the broadcast or even exchanging files between the card and the TV's storage. It is worth bearing in mind that SD cards have several subtypes — original SD, SD HC and SD XC, and not all of them may be supported by the card reader.
— LAN. Standard connector for wired connection to computer networks (both local and the Internet). Mostly found in models with Smart TV support (including Android TV devices; see related paragraphs). A wired connection is less convenient than Wi-Fi, not as aesthetically pleasing, so manufacturers place more emphasis on a wireless connection, as a result of which the speed indicators of the LAN connector are not indicated, and in some cases may be unacceptable for 4K broadcasts.
— VGA. Analogue video input, also known as D-sub 15 pin. Initially, the VGA interface was developed for computers, but due to the emergence of more advanced standards like HDMI (see below) and technical limitations (the maximum resolution is only 1280x1024, the inability to transmit sound), it is considered obsolete and is used less and less. So it makes sense to specifically look for a TV with such a connector mainly in cases where it is planned to be used as a monitor for an outdated computer or laptop.
– Composite AV input. Analogue input for video and audio transmission. Previously, it consisted of 3 RCA sockets (yellow for video, white and red for audio) and was connected to the equipment accordingly. Now in many models you can find an AV output, which is a single connector in the “headphone” format, to which a tee cable is already connected (check availability in the package).
— COM port (RS-232). A connector originally designed for computer equipment. In TVs, it is used as a service interface: for troubleshooting, updating firmware, adjusting TV parameters and various calibrations, integrating the TV into centralized remote control systems, etc. Note that the COM port may differ in shape and contact group in different TV models. It is often designated as RS-232C.Outputs
—
Coaxial (S/P-DIF). An interface for transmitting audio in digital format, which allows to transmit multi-channel audio via a single cable with an RCA connector (“tulip”). In terms of resistance to interference, this standard is somewhat inferior to the optical one (see below) — this is due to the fundamental differences between these interfaces. On the other hand, electrical cable is more reliable than optical fibre and is not as sensitive to pressure and bending.
—
Optical. An output for transmission of a digital audio signal on a fibre optic cable; allows the transmission of multi-channel audio. Notable for its complete insensitivity to electromagnetic interference. On the other hand, fibre optic cable is quite fragile, it must be protected from bending and strong pressure.
—
Mini-Jack (3.5 mm) for headphones. Standard 3.5mm headphone jack. Headphones can come in handy if you need to keep quiet and you can’t use the TV speakers – for example, at a later time of the day; or vice versa, if the environment is noisy and the sound of the TV is hard to hear. Most modern "ears" use a mini-Jack plug, so this connector is the standard headphone output in TVs. And in some models, this output can also be used as a linear output — for example, to connect individual speakers, a sound recording device, etc.
— Subwoofer. A separate output for connectin
...g a subwoofer to a TV is a speaker for reproducing low and ultra-low frequencies. Audio systems without subwoofers usually reproduce these frequencies quite poorly. The use of subwoofer allows you to achieve the most deep and rich sound, which is especially important when watching movies with a lot of special effects or high-quality recordings from concerts. At the same time, it is worth noting that such outputs are quite rare in TVs: it is assumed that a full-format external audio system is more suitable for a demanding listener than a separate subwoofer.
— Line. Standard analogue audio interface; usually, provides the transmission of two-channel stereo. It is used primarily to connect active speakers and other audio equipment (for example, audio receivers or power amplifiers) to TVs. It can use different types of connectors, but most often it provides either a 3.5 mm mini-Jack or a pair of RCA jacks for tulip cables. Note that it is a separate line output that is meant here; in some models, this function can be performed by a 3.5 mm headphone jack (see above), but for them the presence of a line-out is not indicated.Power consumption
The electrical power normally consumed by the TV. This parameter strongly depends on the screen size and sound power (see above), however, it can be determined by other parameters — primarily additional features and technologies implemented in the design. It is worth noting that most modern LCD TVs are quite economical, and most often this parameter does not play a significant role — in most cases, power consumption is about several tens of watts. And even large models with a diagonal of 70 – 90" consume about 200 – 300 W — this can be compared with the system unit of a low-power desktop PC.