USA
Catalog   /   Computing   /   Monitors

Comparison AOC 27G2U 27 " vs LG UltraGear 27GL650F 27 " black

Add to comparison
AOC 27G2U 27 "
LG UltraGear 27GL650F 27 "  black
AOC 27G2U 27 "LG UltraGear 27GL650F 27 " black
from $255.00 
Outdated Product
from $331.59 
Outdated Product
TOP sellers
Main
IPS matrix. Refresh rate 144 Hz. MPRT response time 1 ms. FreeSync and G-Sync support. Adjustable screen height and rotation. USB hub. Stereo speakers.
Product typegaminggaming
Size27 "27 "
Screen
Panel typeIPSIPS
Surface treatmentglossy (anti-glare)glossy (anti-glare)
Resolution1920x1080 (16:9)1920x1080 (16:9)
Pixel size0.31 mm0.31 mm
Response time (GtG)5 ms5 ms
Response time (MPRT)1 ms
Refresh rate144 Hz144 Hz
Refresh rate (vert.)48 – 146 Hz
Refresh rate (hor.)30 – 160 kHz
Vertical viewing angle178 °178 °
Horizontal viewing angle178 °178 °
Brightness250 cd/m²400 cd/m²
Static contrast1 000:11 000:1
Dynamic Contrast80 000 000:1
Colour depth6 bit + FRC8 bit
Colour space (NTSC)85 %
Colour space (sRGB)120 %99 %
HDR+
Connection
Video transmission
VGA
DisplayPort v 1.2
HDMI x2
v 1.4
 
DisplayPort v 1.4
HDMI x2
v 2.0
Connectors (optional)
mini-Jack input (3.5 mm)
mini-Jack output (3.5 mm)
 
mini-Jack output (3.5 mm)
Features
Features
Flicker-Free
AMD FreeSync Premium
 
Flicker-Free
AMD FreeSync Premium
NVIDIA G-Sync Compatible
Portrait pivot
Screen rotation
Height adjustment
Speakers
Sound power
4 W /2x2W/
USB hub 3.x
 /4/
Fast charge
Game Features
aim
timer
 
aim
 
brighten darker areas /Black Stabilizer/
General
Headphone holder
Wall mountVESA 100x100mmVESA 100x100mm
Power consumption28 W48 W
Dimensions (WxHxD)
615x757x274 mm /with stand/
Weight5.1 kg
6.4 kg /with stand/
Color
Added to E-Catalogaugust 2019august 2019

Response time (MPRT)

The parameter expresses how long an object moving in the frame is displayed on the screen until it completely disappears. The lower this indicator, the more realistic dynamic scenes look on the monitor. The reaction of the matrix to movements clearly shows the time of existence of the trail from the changing picture. The MPRT parameter is more dependent on the refresh rate of the monitor screen than on the pixel response time. To reduce its value, the Motion Blur Reduction (MBR) function is often used, which briefly turns off the backlight at the end of the time of dynamic frames in order to increase the clarity of dynamic scenes.

Refresh rate (vert.)

The vertical refresh rate supported by the monitor.

Initially, the term "sweep frequency" was used in the characteristics of CRT monitors that work with an analogue signal. By tradition, it continues to be used for LCD matrices, however, for such screens, the refresh rate is actually the frame rate. See above for more on frame rate; here we note that in this case it is not the maximum frequency that is indicated, but the frequency range supported by the monitor — from the minimum to the maximum. This allows you to evaluate compatibility with certain video cards and operating modes: the frame rate of the video signal must match the frame rate of the monitor (or at least be a multiple of it), otherwise twitches and other unpleasant phenomena are possible.

It is worth noting that the monitor usually does not support any refresh rate from the range given in the specifications, but only certain standard values — for example, 50 Hz, 60 Hz and 75 Hz for the 50 – 75 Hz model.

Refresh rate (hor.)

The horizontal refresh rate of the image on the monitor screen.

This parameter was relevant for CRT monitors, in which the image was formed by an electron beam that "ran through" each individual line on the screen and illuminated the pixels. The horizontal refresh rate described the number of lines drawn per second. However, modern LCD matrices do not use a scan, but a full-frame image. Therefore, today this parameter is rarely given in monitors, and it describes the maximum horizontal frequency in an analogue video signal (for example, via the VGA interface), with which the screen can work normally.

Brightness

The maximum brightness provided by the monitor screen.

Choosing a monitor with high brightness is especially important if the device is going to be used in bright ambient light — for example, if the workplace is exposed to sunlight. A dim image can be "dampened" by such lighting, making work uncomfortable. In other conditions, the high brightness of the screen is very tiring for the eyes.

Most modern monitors give out about 200 – 400 cd / m2 — this is usually quite enough even in the sun. However, there are also higher values: for example, in LCD panels (see "Type") the brightness can reach several thousand cd/m2. This is necessary taking into account the specifics of such devices — the image must be clearly visible from a long distance.

Dynamic Contrast

Dynamic contrast provided by the monitor screen.

Dynamic contrast refers to the difference between the brightest white at maximum backlight intensity and the deepest black at minimum backlight. In this way, this indicator differs from static contrast, which is indicated with a constant backlight level (see above). Dynamic contrast ratio can be expressed in very impressive numbers (in some models — more than 100,000,000: 1). However, in fact, these figures are poorly correlated with what the viewer sees: it is almost impossible to achieve such a difference within one frame. Therefore, dynamic contrast is most often more of an advertising than a practically significant indicator, it is often indicated precisely in order to impress an inexperienced buyer. At the same time, we note that there are "smart" backlight technologies that allow you to change its brightness in certain areas of the screen and achieve a higher contrast in one frame than the claimed static one; these technologies are found mostly in premium monitors.

Colour depth

The colour depth supported by the monitor.

This parameter characterizes the number of shades that the screen can display. And here it is worth recalling that the image in modern monitors is based on 3 basic colours — red, green, blue (RGB scheme). And the number of bits is indicated not for the entire screen, but for each base colour. For example, 6 bits (the minimum colour depth for modern monitors) means that the screen is capable of producing 2 ^ 6, that is, 64 shades of red, green and blue; the total number of shades will be 64 * 64 * 64 = 262,144 (0.26 million). An 8-bit colour depth (256 shades for each base colour) already gives a total of 16.7 million colours; and the most advanced modern monitors support 10-bit colour, allowing you to work with more than a billion shades.

Screens with support for FRC technology are worth a special mention; nowadays, you can find models marked " 6 bit + FRC " and " 8 bit + FRC ". This technology was developed to improve picture quality in situations where the incoming video signal has a greater colour depth than the screen, such as when 10-bit video is fed to an 8-bit matrix. If such a screen supports FRC, the picture on it will be noticeably better than on a regular 8-bit monitor (although somewhat worse than on a full-fledged 10-bit monitor, but “8 bit + FRC” screens are much...cheaper).

High colour depth is important primarily for professional graphics and other tasks that require high colour fidelity. On the other hand, such features significantly affect the cost of the monitor. In addition, it is worth remembering that the quality of colour reproduction depends not only on the colour depth, but also on other parameters — in particular, colour gamut (see below).

Colour space (NTSC)

The colour gamut of the monitor is based on the NTSC colour model.

Any colour gamut is indicated as a percentage, however, not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the monitor's capabilities, the better its colour reproduction.

Specifically, NTSC is one of the first colour models created back in 1953 with the advent of colour television. It is not used in the production of modern monitors, but is often used to describe and compare them. NTSC covers a wider range of colours than sRGB, which is standard in computer technology: for example, coverage of only 85% in NTSC gives about 110% in sRGB. So the colour gamut for this model is usually given for advertising purposes — as a confirmation of the high class of the monitor; a very good indicator in such cases is considered to be 75% or more.

Colour space (sRGB)

Monitor colour gamut Rec. 709 or sRGB.

Any colour gamut is indicated as a percentage, however, not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the monitor's capabilities, the better its colour reproduction.

Nowadays, sRGB is actually the standard color model adopted for computer technology; This is what is used in the development and production of most video cards. For television, the Rec. standard, similar in parameters, is used. 709. In terms of the range of colors, these models are identical, and the percentage of coverage for them is the same. In the most advanced monitors it can reach or even exceed 100%; These are the values that are considered necessary for high-end screens, incl. professional.

HDR

This technology is designed to expand the range of brightness reproduced by the monitor; Simply put, an HDR model will display brighter whites and darker blacks than a "regular" display. In fact, this means a significant improvement in colour quality. On the one hand, HDR provides a very "live" image, close to what the human eye sees, with an abundance of shades and tones that a normal screen cannot convey; on the other hand, this technology allows to achieve very bright and rich colours.

Modern HDR monitors may use the DisplayHDR designation. This standard takes into account a number of parameters that determine the overall quality of HDR performance: brightness, colour gamut, colour depth, etc. Based on the results of measurements, the monitor is assigned one of the following markings: DisplayHDR 400 means relatively modest HDR capabilities, DisplayHDR 600 is average, DisplayHDR 1000 is above average, DisplayHDR 1400 is advanced. At the same time, the absence of a DisplayHDR label in itself does not mean anything: it’s just that not every HDR monitor is tested according to this standard.

Note that for the full use of HDR, you need not only the appropriate monitor, but also content (movies, television, etc.) originally created in HDR. In addition, there are several different HDR techn...ologies that are not compatible with each other. Therefore, when buying a monitor with this function, it is highly desirable to clarify which version it supports.
AOC 27G2U often compared
LG UltraGear 27GL650F often compared