USA
Catalog   /   Tools & Gardening   /   Measuring tools   /   Laser Measuring Tools

Comparison Bosch PLR 50 C 0603672220 vs Bosch PLR 50 0603016320

Add to comparison
Bosch PLR 50 C 0603672220
Bosch PLR 50 0603016320
Bosch PLR 50 C 0603672220Bosch PLR 50 0603016320
from $119.80 up to $165.84
Outdated Product
from $83.40 up to $155.96
Outdated Product
TOP sellers
Main
Folding bracket. Three reference points (with the ability to measure from a corner). Tilt sensor. Color touch display. Memory for 10 measurements. High autonomy. Bluetooth. Case.
Reference planes for measurement - 3. Spirit level for alignment in the plane.
Typelaser distance meterlaser distance meter
Specs
Measurement range0.05 – 50 m0.05 – 50 m
Accuracy2 mm2 mm
Reference points33
Operating temperature-10 – 50 °C-10 – 50 °C
Auto power off
Auto power off5 min5 min
Laser auto-off20 с
Laser characteristics
Diode emission635 nm635 nm
Laser colourredred
Laser class22
Point projections11
Features
positioning pin
Displaytouchb/w without backlight
Spirit level
Bluetooth
Distance meter functions
area / volume measurement
indirect measurements (Pythagorean)
tilt angle measurement
add / subtract
continuous measurement (tracking)
last measurements memory
10
area / volume measurement
indirect measurements (Pythagorean)
 
add / subtract
continuous measurement (tracking)
 
 
General
IP protection rating5454
Power source3xAAA4хААА
Operating time2.5 h5 h
Number of measurements10000
In box
case / pouch
non chargeable batteries
belt
case / pouch
non chargeable batteries
 
Dimensions115x50x23 mm58x104x36 mm
Weight130 g180 g
Added to E-Catalogaugust 2015april 2014

Laser auto-off

takes no action.

This parameter is relevant primarily for laser rangefinders. This is due to the fact that in such devices the laser is one of the most “gluttonous” (in terms of power consumption) components, moreover, it is used only directly in the measurement process. Therefore, along with auto-shutdown of the device itself (see above), such devices can also provide auto-shutdown of the laser — mainly as a “safety” function in case the user himself forgets to turn off the emitter. The time of such an auto-shutdown usually does not exceed a minute — one and a half, although there are exceptions.

Display

Own screen on the device body.

All displays are used to display various additional information, which makes control more convenient and clear compared to models without displays ; but the specific functionality and features of the screen may vary, depending on the type. There are black and white options, backlit displays, color and even touch screens. More details about each:

— B/W without backlight. The simplest and most inexpensive type of display: a black-and-white LCD sensor without its own backlight. Despite their overall simplicity, such screens can have quite extensive capabilities: technically, they can display data related to the operation of the device (for example, the results of rangefinder measurements), and other additional information, including quite specific ones. In fact, the only thing that b/w displays are not suitable for is displaying images from a digital camera. In practice, the functionality of the display is selected according to the capabilities of a particular device. As for the lack of backlighting, this feature makes it difficult to use in low light conditions, but it reduces the price and power consumption. In addition, under the sun or other bright lighting on advanced backlit screens the image may “fade”, while on the simplest black and white screens wi...thout backlight it, on the contrary, becomes even clearer.

— B/W with backlight. Black and white screens equipped with backlight systems. Note that this category actually includes two types of displays: traditional black-and-white LCD matrices in the “black image on a white background” format, supplemented by an external lighting system, as well as single-color screens in the “light image on a black background” format, where the light itself can glow. image. Be that as it may, such displays can be used without restrictions in low light, but the downside of this is increased power consumption - especially in models where the backlight is constantly on.

- Colored. The functionality of color displays can be different - from the simplest LCD screens, capable of displaying only a few primary colors (for example, highlighting the most important numbers on the screen in a different color), to full-color matrices (like tech used, for example, in laptops). The first type is somewhat more convenient and clearer than the b/w displays described above, costs a little more, but has no other differences. The most advanced color screens, in turn, can even display a picture from a digital camera - and, in fact, they are mainly used in devices equipped with such cameras.

- Touch. The most advanced type of display. Such screens are almost always made in color and equipped with backlighting, and touch controls also allow them to be used to control the device (similar to what happens in smartphones and tablets). In terms of control, touch screens are more convenient and intuitive than traditional panels with buttons, switches, etc.; they are much better suited to handle the abundance of functions, and also provide some additional capabilities that are not available with traditional controls. On the other hand, such equipment is not cheap, and it simply does not make sense to use it in relatively simple and inexpensive devices - for such models, more affordable displays, even the simplest black and white ones, are quite sufficient. Therefore, the presence of a touch screen is almost guaranteed to be a sign of a high-end device with an abundance of functions.

Spirit level

Level based on a spirit capsule (or several such capsules) built into the body of the instrument.

Such a device allows you to control the position of the device — namely, to check whether it is set horizontally; however, some models also provide levels for the vertical position, and sometimes even for tilting at 45 ° or another angle. But the specific purpose of the spirit level may be different, depending on the type and general level of the device. The most popular option is a preliminary, rough installation of the laser level in the horizontal: the initial adjustment is carried out manually using a level, and after that the built-in self-leveling mechanism is activated. In simple and inexpensive household levels where high accuracy is not required, the spirit chamber may even be the only way to set it to the desired position; and some of these devices can also be used as full-fledged building levels.

Bluetooth

The presence of a Bluetooth module allows you to broadcast the measurements to the connected device. Thus, you can make the device as compact as possible, and read the received data directly from the phone. And in the era of high technology and the ability to control the phone with any device, such a decision looks quite reasonable.

Distance meter functions

The functions of the rangefinder allow you to more comfortably perform work and not calculate various mathematical formulas, but with one button to get the result after the measurements have been taken. Among such assistants there are area / volume measurement, indirect measurements (Pythagorean theorem), tilt angle measurements, height measurement, trapezoid measurement, addition / subtraction, min. / maximum values, continuous measurement (tracking), countdown timer, layout mode, painter mode, memory of the last measurements and others. More about them:

— Measurement of area/volume. Built-in software tool for measuring the area and / or volume of premises or large objects. This function works as follows: the user only needs to measure the length, width, and for volume, also the height of the object, after which the rangefinder will independently multiply the received data and display the final result.

— Indirect measurements (Pythagorean theorem). A function that allows you to determine the length of one of the sides of a right triangle from its othe...r two sides. One of its most popular uses is to measure the height of buildings, walls, poles, and other objects without having to approach them. To do this, you need to place the rangefinder at ground level and measure two distances from this point: to the foot of the object, horizontally (one of the legs) and to the top of the object (hypotenuse). Based on the Pythagorean theorem, the device will automatically calculate the length of the second leg - that is, in this case, the measured height.

— Measuring the angle of inclination. A feature that turns the rangefinder into an advanced level. When it is turned on, it is enough to attach the device with its side to an inclined surface or other similar object - and the built-in sensor will automatically determine the angle of inclination, displaying it on the display.

- Height measurement. A special mode for measuring the height of various objects. Note that in many devices this function is actually performed by indirect measurements according to the Pythagorean theorem (see above). Therefore, the possibility of measuring height is indicated mainly in tech models that have more advanced capabilities for such measurements. A typical example is an extended version of the Pythagorean theorem, which is used when a rangefinder is mounted on a tripod at a certain height from the ground. With this placement, to measure the height, you need to take three measurements: the distance to the foot of the object (the rangefinder will be tilted down), to the object horizontally and to its top. According to the data received, the device will build two triangles, perform the necessary calculations and give the final height value.

- Measuring the trapezoid. A function that allows you to determine the length of the fourth side and the total area of the figure from three sides of a rectangular trapezoid. It is mainly used to calculate the area of walls and facades in houses with sloped, gable and other similar roofs. If the upper part of the wall has a slope to one side, to determine the area, it is enough to measure the length of the base and the height of the two sides adjacent to the edges of the roof. If the upper part of the wall adjoins a gable roof, the wall must be divided into two trapeziums and measured using the same procedure; a similar method can be used with roofs of more complex shape, due to which the upper side of the wall looks like a broken line.

- Addition / subtraction. Possibility to sum the results of measurements, as well as to subtract one result from another. One of the simplest computing functions - which, nevertheless, can make life much easier for the user.

— Min. / maximum values. In this mode, the device takes a whole series of measurements at a short interval, and then displays the smallest or largest of the obtained values. As a rule, modern rangefinders provide for both formats of operation (both minimum and maximum), which is why they are combined into one function. However, the meaning of these options is different. So, the maximum value allows, among other things, to accurately determine the size of the room: it is enough to place the device in the corner, turn on the appropriate mode and slowly draw the laser horizontally in the region of the opposite corner; the largest distance obtained will be the length of the size. In turn, the minimum value can be useful, for example, to measure the length of the perpendicular to the wall; the measurement technique here is similar, and the smallest number obtained will just correspond to the length of the perpendicular.

— Continuous measurement (tracking). In this mode, the device continuously takes measurements at a sufficiently high frequency (usually 1 - 2 times per second), displaying the corresponding results on the display. This format of work is also called "roulette mode", it allows you to constantly track the distance from the rangefinder to a specific object. This can be useful, for example, if you need to accurately measure the distance from a wall, pole or other landmark: instead of taking several measurements, trying to “get” the device into the right position, just turn on tracking and move the rangefinder until the desired distance value is not displayed.

- Countdown timer. A function that allows you to automatically take measurements after a specified period of time. A kind of analogue of shooting on a timer in cameras: just point the device at the desired point, turn on the countdown - and at the end of it the device will work itself. The countdown is mainly used to eliminate the twitching of the body, which inevitably occurs when measuring manually (at the touch of a button); this is especially useful for high precision measurements and/or when using the instrument from a tripod or other stand.

- Markup mode. A mode that allows you to divide a particular segment into sections of a certain length - for example, under posts for a fence. The specific implementation and capabilities of this mode may be different, these nuances should be clarified in the instructions for a particular device. So, in some devices, you can measure the total length of the segment, set the number of identical sections - and the electronics will calculate the length of each part. In others, you can manually enter the length of the segment, or even several options for their length at once (for example, the distance from the starting point to the first mark and further gaps between marks). In any case, in the marking mode, the rangefinder works in the same way as the tracking described above - constantly taking measurements and displaying the current result on the display. And when measuring, the device must be smoothly moved along the marked line; when the next mark is reached, a signal will be given.

- Painter mode. A mode designed to calculate the total area of walls (internal in the room or external in the entire building). Such an opportunity is especially convenient for painting work (hence the name), as well as other similar tasks - wallpapering, laying tiles, external insulation, etc. The “painter mode” is implemented, as a rule, as follows: using the device, the master first measures the total perimeter of the walls, then their height (or vice versa), after which the electronics automatically calculates and gives the final value.

— Memory of the last measurements. The ability to save the results of the last few measurements in the memory of the device. In most models with this function, the memory of the last measurements is included initially, the user does not need to specifically change any settings. The convenience of such a memory is obvious: it allows, if necessary, to return to previous results and clarify a particular value without repeating the measurement. It is only necessary to bear in mind two points. Firstly, the number of memory cells can be different - as a rule, it is in the range from 20 to 100 and is indicated here, right under the words "memory of the last measurements." Secondly, when these cells overflow, the newest results are automatically overwritten in place of the oldest ones; and such a function as protecting individual cells from overwriting is usually not found in laser rangefinders (although exceptions are possible - this point should be clarified in the documentation for a particular device).

- Calculator. A traditional calculator that allows you to perform various calculations at the request of the user. These can be both operations with data obtained during measurements, and operations with numbers entered manually.

— Horizontal mode Smart. "Smart" mode, which allows you to measure and calculate a whole range of dimensions and angles, literally on the spot. A typical example of the implementation of Smart looks like this: a rangefinder from the same point measures two distances to a wall or other similar object - one is the smallest (along the perpendicular), and the second to a certain point “nearby”. After that, based on the received data, the device calculates the angle of rotation and the distance between the points. Other, more specific functions are also possible.

— Measurement of inclined objects. Various additional functions related to the measurement of inclined objects (in addition to determining the angle of inclination described above). The specific set of such capabilities may vary; they should be specified separately.

We also note that in modern rangefinders there may be other possibilities, in addition to tech listed above.

Power source

The type and number of batteries used in the level/distance meter. All elements of standard sizes (AA, AAA, C, D, PP3) are available in two formats — disposable batteries and rechargeable batteries. This gives the user a choice: either buy relatively inexpensive batteries every time, or invest once in a rechargeable battery with a charger, and then simply charge the battery as needed. Branded batteries are, by definition, made only rechargeable, as are 18650 batteries.

Specific types of power today can be as follows:
— AA. A standard battery, known as a "finger battery". The power of these batteries is average, they can be used both in simple and quite advanced devices. This power supply is convenient due to the fact that AA batteries are very widespread and sold almost everywhere — due to this, finding and replacing them is usually not a problem.
— AAA. A smaller version of the AA element described above — almost identical in shape, but thinner and shorter. Such elements, known as "mini-finger" or "little fingers", have a rather low capacity and power, but are useful for portable devices, where compactness is crucial. They are also quite widespread.
— C. A cylindrical element, in the form of a rather thick "bar...rel" — with a length of 50 mm, the diameter is 26 mm. Due to its higher capacity and power than AA, it is better suited for advanced models with "long-range" lasers, but is less commonly used and generally less common.
— D. The largest and most capacious type of standard batteries found in modern levels and distance meter: thickness and diameter are 62 and 34 mm, respectively. The main area of application for D batteries is powerful professional devices.
— Rechargeable battery. In this case, the tool is powered by an branded battery that does not belong to any standard size. This option is good because such batteries are initially created for a specific model of the level/distance meter and are supplied in the set (and in some models they are made non-removable); in addition, their specifications can significantly exceed those of standard elements of a similar size and weight. On the other hand, such power source is less convenient when the charge runs out at the wrong moment: the only way to remedy the situation is usually to recharge, and it takes quite a long time (whereas standard batteries can be replaced in just a minute).
– 18650. The name of these batteries comes from their dimensions: 18.6x65.2 mm, cylindrical, outwardly they resemble somewhat enlarged AA batteries, but they have an operating voltage of about 3.7 V and a higher capacity. In addition, all 18650 type batteries are by definition not disposable, but rechargeable batteries (lithium-ion type).

— PP3. 9-volt batteries of a spesific rectangular shape, with a pair of contacts on one of the ends. Due to the high operating voltage, they provide high power and actual capacity, so one such battery is usually enough for operation.

— LR44. Miniature batteries of "coin" type, 11.6 mm in diameter and 5.4 mm thick. Usually installed in sets of 3 and are used in compact low-power laser levels, for which small size is more important than power and capacity. Note that specifically the LR44 marking refers to relatively inexpensive alkaline batteries; more expensive and advanced silver-zinc power supplies are referred to as SR44, or 357.

— 23A12V. A rather rare option: cylindrical batteries (length 29 mm, diameter 10 mm) with a nominal voltage of 12 V.

Operating time

Operating time of the device on one battery charge.

It is worth considering that these figures are quite approximate, since the operating time is measured under certain standard conditions (usually continuous operation at nominal power). And since in practice conditions may differ markedly, the operating time may turn out to be noticeably shorter or longer than stated. In addition, if the device uses replaceable batteries (AAA, AA and the like), then autonomy will also depend on the quality of the specific batteries/accumulators. Nevertheless, based on the data specified in the characteristics, it is quite possible to evaluate the capabilities of specific models and compare them with each other: the difference in the declared operating time, as a rule, proportionally corresponds to the difference in practical autonomy under the same conditions.

We also note that the operating time is specified mainly for levels; in rangefinders another parameter is more often used - the number of measurements (see below).

Number of measurements

A parameter that characterizes the performance of the device on a single battery charge. Shows how many measurements can be taken without recharging.

In box

holder. Devices for fixing the level / range finder on various surfaces. Such a device differs from a tripod primarily in its small size — within a couple of tens of centimeters. On the other hand, most holders allow you to install the device not only on horizontal, but also on vertical surfaces — for example, walls (and some are exclusively wall-mounted). Anyway, this function greatly expands the installation possibilities.

Receiver. laser radiation supplied with the device. This device is usually equipped with laser levels, less often with rangefinders, and it is not required at all for optical instruments. The main purpose of the receiver is situations where the laser mark is not visible to the naked eye — for example, at a long distance or in bright light. More details on the features of its application are described above in the paragraph “Measurement range (with receiver)”.

Tripod. Most modern instruments have a standard size thread and can be used with any suitable tripod. On the other hand, a complete tripod is most often specially designed for a certain model and optimally matches it in terms of general characteristics. In addition, this configuration option relieves you of the need to look for and purchase a suitable tripod yourself.

Case / case. The main function of these devices is to protect...the device from bumps, scratches, dirt, temperature changes and other adverse effects; for this, of course, improvised means can also be used, but specialized protection is usually both more convenient and more reliable. In addition, almost all cases and most covers greatly simplify the transportation of the tool — in particular, due to the fact that they can also be used for complete accessories.

Remote control. Among rangefinders and optical levels, this function is practically not found, because. working with them involves the constant stay of the device in the hands of the operator. But for laser levels that require you to regularly move from the device to the surface to be marked and back, the remote control can be a very useful addition — due to the fact that it minimizes such movements. For example, after marking the "front of work" on the wall according to the projection from the level, you do not have to approach the device to turn it off — just give a command from the remote control. At short distances, the savings in time and effort may not be so obvious, but over large areas, they can become quite noticeable.
Bosch PLR 50 C 0603672220 often compared
Bosch PLR 50 0603016320 often compared