Dark mode
USA
Catalog   /   Sound & Hi-Fi   /   Musical Instruments   /   Pianos & Keyboards   /   Digital Pianos

Comparison Yamaha YDP-143 vs Kurzweil M210

Add to comparison
Yamaha YDP-143
Kurzweil M210
Yamaha YDP-143Kurzweil M210
Compare prices 2
from $1,074.00
Outdated Product
TOP sellers
Bodystationarystationary
Cover
Built-in pedals
Keys
Number of keys88 шт88 шт
Sizefull sizefull size
Mechanicsmalleusmalleus
Sensitivity adjustment
Rigidityweightedweighted
Specs
Polyphony192 voices128 voices
Built-in timbres10 шт20 шт
Auto accompaniment
Accompaniment styles12 шт
Tempo change5 – 28030 – 250
Metronome
Sequencer (recording)
Built-in compositions
Effects and control
Timbres layering
Keyboard split
Octave shift
Reverberation
Chorus
Transposition
Fine tuning
More featuressound management system
Connectors
Inputs
 
Mini-jack (linear)
Connectable pedals1 шт
Outputs
USB to host (type B)
USB to host (type B)
Headphone outputs2 шт2 шт
Linear outputs1 шт
General
Built-in acoustics12 W30 W
Number of bands11
Displaymonochrome
Power consumption8 W
Dimensions (WxHxD)1357x815x422 mm1384x837x415 mm
Weight38 kg51 kg
Color
Added to E-Catalogjune 2017march 2017

Polyphony

The number of voices supported by the digital piano — more precisely, the maximum number of voices that the instrument can play at the same time.

This parameter should not be confused with the number of notes that can be played simultaneously on the keyboard. The fact is that in many timbres, several voices (tone generators) are used for each note at once — this is the only way to achieve a more or less reliable sound. Thus, the required number of voices can be many times higher than the number of notes — for example, the simplest chord of 3 notes may require 9 or even 12 voices. In addition, tone generators are used to play auto accompaniment parts and built-in songs (see below), and here the number of voices can already be measured in tens.

In light of all this, polyphony of less than 90 voices is typical mainly for relatively simple and inexpensive instruments that are not designed for complex tasks. The smallest number found in modern digital pianos is 32 voices. It is desirable for a more or less solid instrument to have at least 96 voices, and in top models this figure can reach 256.

Built-in timbres

The number of built-in sounds provided by the Digital Piano.

Despite the name, digital pianos are extremely rarely designed to imitate the sound of only a piano — the electronic hardware allows them to provide other timbres of sound. In addition, even the piano has its own varieties — for example, among the grand pianos there are 6 main classes, from large concert to miniature. So the built-in sounds can cover different kinds of pianos, as well as other instruments and sound effects.

The abundance and variety of timbres in digital pianos as a whole is not as great as in synthesizers, however, in this category there are very “charged” models, with a hundred timbres or more (in the most multifunctional, this number can exceed 900). However, it is worth specifically looking for a “multi-instrumental” model if you do not intend to be limited to the sound of the piano and would like to have more freedom of choice. It is worth remembering that a specific set of timbres can be different.

If the instrument is bought exclusively as a piano, then here, on the contrary, it is worth paying attention primarily to solutions with a small number of timbres. Such models are not only cheaper than "universals" — they can also sound better (due to the fact that there are few timbres and the manufacturer can carefully approach the sound quality of each built-in "instrument").

Auto accompaniment

Auto accompaniment feature on the digital piano.

Auto Accompaniment is a melody of a specific style played by the instrument under user control. Such control is carried out by the left hand: the musician takes certain chords on the left side of the keyboard, and the electronics of the instrument adjusts the auto accompaniment melody to the key of the taken chord. Thus, this function allows you to accompany the main part with a full-fledged accompaniment, while the musician only needs to set the chords.

Among digital pianos, unlike synthesizers, this function is rare. This is due to the general specialization of this class of instruments (not least professional music-making, including as part of an ensemble or orchestra). However, auto accompaniment is available on both relatively simple and high-end digital pianos.

Accompaniment styles

The number of Auto Accompaniment Styles (see above) originally stored in Digital Piano memory.

Different auto accompaniment styles differ from each other in the same way that different melodies differ from each other — in tempo, time signature, rhythmic pattern, set of instruments used, etc. Accordingly, the more styles initially available in the instrument, the wider the choice of the musician and the higher the probability of finding the option that best suits a particular situation. However even numerous styles does not guarantee that among them there will be a suitable one; in addition, we note that with the same number of styles, their specific set in different instruments can also be different. However, custom styles can be provided for this case (see below).

Summarizing, we can say this: if you plan to work intensively with auto accompaniment, in addition to the number of styles, it will not hurt to clarify their specific range.

Tempo change

The range over which the tempo of the sound played by the instrument can change. It can be either a built-in melody or a part recorded on a sequencer, or an auto accompaniment, a tutorial or a metronome. For more information on all of these features, see the corresponding glossary entries. Here we note that a change in tempo is often required in fact — for example, to speed up an initially "sluggish" accompaniment or slow down a training programme that is difficult to master at the original tempo.

Tempo is traditionally indicated in beats per minute. The classical, "academic" range covers options from 40 bpm ("grave", "very slow") to 208 bpm ("prestissimo", "very fast"), however, in modern digital pianos, the working range of tempos is often significantly wider.

Chorus

The presence of the chorus effect in the digital piano.

Initially, this effect was developed as an attempt to simulate the choral sound of several instruments of the same type. Even a perfect choir never plays 100% in sync, which is what the creators of the chorus tried to reproduce. This effect works as follows: several copies are taken from the main signal, which are played along with it — but not strictly simultaneously, but with a small (up to 30 ms) delay, selected randomly for each individual signal. This really allows to imitate the effect of polyphony to a certain extent, however, such sound is still far from a full-fledged choir. However, the chorus itself is quite interesting as an additional effect.

Fine tuning

The ability to fine-tune the digital piano for specific frequencies.

The essence of this function is generally similar to transposition — a slight shift of each note in frequency up or down. However, with fine tuning, the shift does not occur in steps (by an integer number of semitones), but very slowly and smoothly — by a certain number of hertz or even tenths of a hertz relative to the base scale. The base scale is often called "440 Hz" — this is the standard frequency of the "la" note of the first octave, according to which the rest of the scale is tuned. For a musician, fine tuning usually looks like an opportunity to set a different key frequency value — for example, 438 Hz or 441.2 Hz.

This feature can be useful for tuning the digital piano to another instrument whose frequencies change smoothly, such as a guitar. In many situations, it is easier to change the frequency settings in a digital device than to twist the strings or otherwise fiddle with complex tuning.

More features

Additional features and sound customization options provided by the instrument in addition to those listed above. In this paragraph, usually, various original proprietary technologies and solutions are indicated; the specific meaning of these functions is best specified in the documentation for the tool.

Inputs

— Mini-jack (linear). Any line input is designed to receive an audio signal in analogue format. Such an audio signal can be played back by the instrument itself through the built-in speakers, external speakers or headphones, switched to external equipment (for example, an amplifier or audio receiver), or recorded (if you have a sequencer, see above). In digital pianos, the most popular is the first option — playback; typically, the line-in sound either serves as an accompaniment to the main part or provides additional effects. As for the mini-Jack standard, this is a miniature plug, also called "3.5 mm" and known to many as a standard audio jack on a smartphone, laptop or computer. However, this standard is also very popular in digital pianos — among external signal sources, mini-Jack plugs are generally more common than full-size Jacks.

— Jack (linear). Line input using a Jack type connector (aka "6.35 mm"). In terms of purpose, such an input does not differ from the mini-Jack type input described above. As for the connector, it is almost 2 times larger than the mini-Jack in diameter — however, given the dimensions of digital pianos, this cannot be called a serious drawback. At the same time, the Jack socket provides a better and more reliable connection, with less likelihood of interference. At the same time, for a number of reasons, this type of connector is used somewhat less frequently in digital pianos.

— MIDI in. An...input that allows the Digital Piano to receive MIDI signals from external equipment. MIDI is a standard signal format in electronic musical instruments; such a signal (MIDI-event) is created for each keystroke and contains information about the note number, strength, speed and duration of pressing; these signals can then be recorded and/or played back in a specific tone. The ability to receive MIDI events from external devices can be useful, for example, when playing two keyboard instruments at once (to play all the music on one of them, with better sound quality), or to use the digital piano as an adapter for another instrument that does not having the desired tones. In addition, technically, a MIDI signal can be switched to other devices (see "Outputs — MIDI thru").

— USB to device (type A). USB connector that allows you to connect various external devices to the digital piano. However, most often the range of such devices is limited to "flash drives" and other drives. However, even this functionality can provide very extensive additional features: you can play backing melodies from a flash drive, update user timbres and auto-accompaniment styles (see above) or even instrument firmware, and copy materials recorded by a sequencer to a flash drive (or even write music directly). ), etc. Specific features in different models may be different, this point should be clarified separately.

— Card reader. A device for reading memory cards — usually, the popular SD format. By purpose, this function is similar to working with a USB flash drive (see above), adjusted for the fact that memory cards will be convenient primarily when exchanging data with a laptop — almost all modern laptops are equipped with card readers, which cannot be said about desktop PCs.
Yamaha YDP-143 often compared
Kurzweil M210 often compared