USA
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   Amplifiers

Comparison Yamaha A-S501 vs NAD C165BEE

Add to comparison
Yamaha A-S501
NAD C165BEE
Yamaha A-S501NAD C165BEE
Compare prices 7
from $1,250.00 up to $1,430.00
Outdated Product
User reviews
TOP sellers
Device typeintegrated amplifierpreamplifier
Element basetransistortransistor
Capacitor capacitance12 mF
Amplifier parameters
Number of channels22
Frequency range
10 – 100000 Hz /+/- 1 дБ/
20 – 20000 Hz /±0,1 дБ/
Power per channel (8Ω)85 W
Power per channel (6Ω)100 W
Signal to noise ratio99 dB108 dB
Signal to noise ratio (Phono MM/MC)82 dB86/78 dB
Damping factor240
Harmonic distortion0.019 %
0.001 % /20 – 1000 Hz/
Channel sensitivity / impedance
Line input
200 mV
47 kOhm
158 mV
100 kOhm
Phono MM/MC
3 mV
47 kOhm
2.63/0.15 mV
47 kOhm
REC output
200 mV
1 kOhm
 
0.44 kOhm
Preout
 
0.07 kOhm
Connectors
Inputs
Phono
coaxial S/P-DIF
optical
 
Phono
 
 
control input (IR)
RCA4 pairs6 pairs
Outputs
 
to subwoofer
 
Pre-Amp /two pairs/
to subwoofer /cutoff frequency 100 Hz/
control output (IR)
For acoustics4 шт
REC (to recorder)2 pairs2 pairs
Trigger output1 шт
On headphones6.35 mm (Jack)
Front panel
indicators
headphone output
indicators
headphone output
Features
Adjustments
bass control
treble adjustment
balance adjustment
level adjustment
loudness
bass control
treble adjustment
balance adjustment
level adjustment
 
More features
By-pass/Direct
auto power off
ММ phono stage
 
additional speaker connect
Bi-Wiring
 
 
 
ММ phono stage
MC phono stage
additional speaker connect
 
external devices control
General
Remote control
PSUinternalinternal
Power consumption
240 W /510 W maximum/
21 W
Standby consumption0.5 W0.8 W
Dimensions (WxDxH)435x387x151 mm135х315х99 mm
Weight10.3 kg6 kg
Color
Added to E-Catalogjanuary 2015january 2014

Device type

Preamplifier. Preamplifiers are designed to initially process a weak signal and bring it to a level sufficient for transmission via a linear interface to a power amplifier (see below). Such models are able to work directly with sound pickups, microphones and other similar devices, may have additional sound correction functions, play the role of switches for connected signal sources, etc., but are not suitable for outputting sound to passive speakers or headphones.

Power amplifier. Such models are designed to take the signal processed by the preamplifier and output it to the power sufficient to operate the connected speaker system. They can already work with passive type speakers, but they cannot do without a preamplifier for the input signal. However, it is worth noting here that most modern players are equipped with built-in preamps and can be used directly with power amplifiers.

Integrated amplifier. Amplifiers that combine the capabilities of both of the above types in one package. The main advantage of such models is obvious: instead of two specialized devices, you can buy one universal one. This saves money, time and installation space, and reduces the chance of interference as there are no external connecting cables between the preamplifier and main amplifier and the components are usually optimally matched to each other. On the other hand, th...e integrated model provides fewer options for choosing the option for your own preferences: you have to purchase the device "as is", without the ability to separately select a preamplifier and power amplifier.

Amplifier-processor. Professional models, typically for live use, are rack mounted and often use Euroblock jacks as Main inputs (see below). In terms of general application, processors are similar to power amplifiers, however, in addition to these features, they are also characterized by an abundance of settings that facilitate the work of sound engineers.

Subwoofer amplifier. Specialized power amplifiers designed for low-frequency speakers — subwoofers. The design of such models usually provides for crossovers with an upper limit of the transmitted range at the level of 150 – 200 Hz; this allows only “native” frequencies to be fed to the subwoofer and has a positive effect on sound quality. In addition, many amplifiers of this type have specific settings such as phase control.

Capacitor capacitance

The total capacitance of the capacitors installed in the power supply of the amplifier. Usually, for ordinary lovers of high-quality sound, this indicator is not practically significant: the capacitance is selected in such a way as to optimally (or at least minimally) match the characteristics of the amplifier. However, for demanding audiophiles who pay attention to the smallest details of audio system components, capacitors are also often of interest.

The fact is that they are an important part of the rectifier circuit — they smooth out current fluctuations that arise both due to the imperfection of the rectifiers themselves and due to various external factors. Knowing the total capacitance of the capacitors, one can also evaluate the efficiency of their work: the higher this indicator, the more stable the power supply will work and the lower the likelihood of sound distortion due to its fault. There are special formulas that allow you to derive the optimal capacitance of capacitors depending on the type, power and other parameters of the amplifier; they can be found in specialized sources.

Frequency range

The range of audio frequencies that the amplifier is capable of handling. The wider this range, the more complete the overall picture of the sound, the less likely it is that too high or low frequencies will be “cut off” by the output amplifier. However, note that the range of sound audible to a person is on average from 16 Hz to 20 kHz; There are some deviations from this norm, but they are small. At the same time, modern Hi-Fi and Hi-End technology can have a much wider range — most often it is a kind of "side effect" of high-end circuits. Some manufacturers may use this property for promotional purposes, but it does not carry practical value in itself.

Note that even within the audible range it does not always make sense to chase the maximum coverage. It is worth, for example, to take into account that the actually audible sound cannot be better than the speakers are capable of giving out; therefore, for a speaker system with a lower threshold of, say, 70 Hz, there is no need to look for an amplifier with this figure of 16 Hz. Also, do not forget that a wide frequency range in itself does not absolutely guarantee high sound quality — it is associated with a huge number of other factors.

Power per channel (8Ω)

The nominal sound power output by the amplifier per channel when operating with a load having a dynamic resistance (impedance) of 8 ohms. In our catalog, this parameter is indicated for the mode when all channels of the amplifier work under load (see "Number of channels"); in the presence of unused channels, the rated power may be slightly higher, but this mode cannot be called standard.

Rated power can be simply described as the highest output signal power at which the amplifier is able to work stably for a long time (at least an hour) without negative consequences. These are average figures, because in fact, the audio signal is by definition unstable, and individual level jumps can significantly exceed the rated power. However, it is she who is the main basis for assessing the overall loudness of the sound.

This indicator also determines which speakers can be connected to the amplifier: their rated power should not be lower than that of the amplifier.

According to the laws of electrodynamics, with different dynamic load resistance, the output power of the amplifier will also be different. In modern speakers, the standard values \u200b\u200bare 8, 6, 4 and 2 Ohms, and power levels are indicated for them.

Power per channel (6Ω)

The nominal sound power output by the amplifier per channel when a load with a dynamic resistance (impedance) of 6 ohms is connected to it. See Power per Channel (8Ω) for more information on power rating and its relationship to impedance.

Signal to noise ratio

In itself, the signal-to-noise ratio is the ratio of the level of pure sound produced by the amplifier to the level of extraneous noise that occurs during its operation. This parameter is the main indicator of the overall sound quality — and very clear, because. its measurement takes into account almost all the noise that affects the sound in normal operating conditions. A level of 70 – 80 dB in modern amplifiers can be considered acceptable, 80 – 90 dB is not bad, and for advanced audiophile-class devices, a signal-to-noise ratio of at least 100 dB is considered mandatory.

If the specifications do not specify for which output the signal-to-noise ratio is indicated, it usually means its value for the linear input (see "RCA (par)"). This is quite enough to evaluate the quality of the device for this parameter. However, some manufacturers indicate it for other inputs — Main, Phono; see below for more on this.

Signal to noise ratio (Phono MM/MC)

signal-to-noise ratio when the amplifier is driven through the Phono input. This interface is for connecting turntables; its features are described in the “Inputs” section below, and for the meaning of any signal-to-noise ratio, see the corresponding section above.

Damping factor

The damping factor describes the quality of interaction between the amplifier and the speaker system connected to it.

Due to the design features, any speaker is prone to the occurrence of so-called parasitic oscillations — oscillations that continue after the main impulse from the amplifier has ceased (similar to how a string continues to vibrate after a pluck). This phenomenon has a negative effect on sound quality, and manufacturers use various means to reduce it to an absolute minimum; suppression of parasitic oscillations is called damping.

The most effective type of damping is electrical, by reducing the output impedance of the amplifier. The lower this resistance, the better the amplifier keeps the speakers from unnecessary vibrations. To evaluate this effect, they introduced the concept of “damping factor” (damping factor) — the ratio of the load resistance (impedance) to the output resistance of the amplifier. The minimum value of such a coefficient for Hi-Fi class equipment is 20; indicators at the level of 100 – 120 can be called good, and among the Hi-End segment there are numbers of the order of several thousand.

At the same time, it is worth noting that when increasing to three-digit numbers, the original meaning of this parameter is, in fact, lost, and other points appear. The most important of them from a practical point of view is that models with a high damping factor are very demanding on the quality of the connection to t...he speakers — the high resistance of cables and connectors can negate the damping properties of the amplifier itself. There are other nuances associated with this indicator (in particular, recommendations for choosing an amplifier and speakers for each other); they are described in detail in specialized sources.

Harmonic distortion

This indicator describes the amount of non-linear distortion introduced by the amplifier into the processed signal. Such distortions are not necessarily perceived as extraneous noise, but they degrade the quality of the sound anyway — for example, they can make it more deaf. It is almost impossible to avoid them, but it can be reduced to levels inaudible to the human ear.

As a result, the harmonic distortion factor (harmonics) is one of the main parameters describing the overall sound quality in Hi-Fi and Hi-End amplifiers. The lower it is, the clearer the sound. Hundredths of a percent are considered a good indicator for modern amplifiers, thousandths and below are excellent. The exceptions are tube and hybrid models, for which rather high harmonic coefficients are allowed; see "Element base" for more details.
Yamaha A-S501 often compared
NAD C165BEE often compared