USA
Catalog   /   Tools & Gardening   /   Construction Power Tools   /   Rotary Hammers

Comparison Bosch PBH 2500 RE 0603344421 vs Bosch PBH 2100 RE 06033A9320

Add to comparison
Bosch PBH 2500 RE 0603344421
Bosch PBH 2100 RE 06033A9320
Bosch PBH 2500 RE 0603344421Bosch PBH 2100 RE 06033A9320
from $103.36 up to $115.96
Outdated Product
from $107.40 
Expecting restock
TOP sellers
Operating modes
hammer drilling
drilling only
chiselling (demolition hammer)
hammer drilling
drilling only
chiselling (demolition hammer)
Specs
Real power300 W270 W
Power consumption600 W550 W
Impact energy1.9 J1.7 J
Number of thrusts5000 bpm5800 bpm
Rotation speed2000 rpm2300 rpm
Reversesliderslider
Motor locationhorizontalhorizontal
Chuck
Chuck type
SDS+
SDS+
Wood drilling max. 30 mm30 mm
Metal drilling max. 13 mm13 mm
Concrete drilling max. 22 mm20 mm
Features
Functions
power button lock
power button lock
General
Power sourcemains (230 V)mains (230 V)
In box
additional handle
depth gauge
case (bag)
additional handle
depth gauge
case (bag)
Weight2.2 kg2.2 kg
Added to E-Catalogjuly 2012june 2012

Real power

The power given out by the perforator directly to the drill or other working equipment. This figure is inevitably lower than the power consumption (see below) due to energy losses in the tool mechanisms.

In general, higher net power means more efficiency and productivity; the reverse side of these advantages is an increase in price, energy consumption, dimensions and weight (however, the latter is not always a drawback for rotary hammers). In addition, note that tools with similar useful power values may differ in the ratio of chiseling speed and impact power: remember, a higher frequency means less energy for each individual impact, and vice versa. So the big numbers in this paragraph can mean both high efficiency when working with hard, stubborn materials, and good performance on relatively simple tasks; these features need to be specified separately.

Also, by the ratio of useful and consumed power, one can evaluate the efficiency of the tool in terms of energy consumption: the lower the power consumption (with the same useful power), the more efficient this model is. The downside of energy efficiency is often increased cost, but it can be recouped fairly quickly in energy savings, especially if you work long hours and often.

Power consumption

Rated power consumed by the rotary hammer during operation. Usually, the maximum power consumption in normal operation is taken as the nominal power.

In general, the higher this indicator, the heavier and more performant the rotary hammer is, the more advanced its performance usually turns out to be. On the other hand, the electricity consumption of such tools is high. In addition, note that with the same power consumption, the actual set of individual characteristics for different tools may be different. For example, frequency and impact energy are inversely related, and for the same power input, higher frequency usually means less individual impact energy. So, according to this parameter, it is worth evaluating only the overall level of the instrument; for accurate selection for specific tasks, you need to pay attention to more specific characteristics.

Also note that power consumption data can be useful for some tasks related to catering — for example, if a construction site is powered by an autonomous generator and you need to estimate the load on this energy source.

Impact energy

The energy transmitted by the perforator to the material being processed upon impact; the higher this indicator, the stronger and more powerful each individual blow.

First of all, we recall that the energy of impacts is directly related to their frequency: an increase in frequency leads to a decrease in energy. Therefore, for models where the number of strokes can be adjusted, this paragraph usually gives the maximum energy achieved at the minimum speed of operation.

In general, higher impact energy improves efficiency when working with hard, stubborn materials, but requires more motor power (especially if it has to be combined with a high frequency). Therefore, it is worth choosing according to this parameter, taking into account specific tasks. So, for occasional use in everyday life, an energy of 2 J or less is enough, for home repair work of medium intensity, at least 3 J is desirable; a power of 4 J or more is already considered high; and in some industrial-grade perforators, this figure can reach 30 J.

Number of thrusts

The number of beats per minute provided by the punch. For models in which the beat frequency can be adjusted, this item indicates the entire adjustment range, for example "1600 — 3000".

High impact frequency, on the one hand, increases the productivity of the tool and can significantly reduce the time required for work. On the other hand, with the same engine power, an increase in the number of strokes per minute leads to a decrease in the energy of each stroke. Therefore, among heavy performant devices, a low frequency is often found — up to 2500 beats / min and even lower. And the ability to adjust the frequency of impacts allows you to adjust the hammer to the specific situation, depending on what is more important — productivity or the ability to cope with hard, stubborn material. For example, for old crumbling brickwork, you can set the speed higher, and for working with stone or dense concrete, it is better to reduce the frequency of impacts by directing engine power to increase the energy of each impact.

Summing up, we can say this: when choosing a perforator, you should focus on both the number of strokes and the impact energy. Detailed recommendations on this subject for specific situations can be found in special sources.

Rotation speed

The speed of rotation of the working equipment provided by the rotary hammer. Usually, this indicates the speed at idle, without load; rated load speeds can be further specified in the characteristics (see below), but this is rare, and this parameter is still considered the main characteristic. It is also worth mentioning that in the presence of a speed controller (see "Functions"), the maximum speed value is given here.

When working in the main mode — drilling with impact — the rotation of the equipment is used mainly to remove waste from the hole, and the revolutions here are of no fundamental importance (they can be very low). Therefore, it is worth paying attention to this indicator mainly in cases where the rotary hammer is planned to be often used for conventional drilling, without impact. And here it is worth proceeding from the fact that high speeds increase productivity and contribute to accuracy when working with some materials, but reduce torque (compared to tools with the same engine power). So for heavy work with hard, stubborn materials, relatively "slow" tools are usually better suited.

Note also that drilling is not the main task of rotary hammers; therefore, their rotation speeds are noticeably lower than those of the same drills. On the other hand, in this case, low speeds are often compensated by powerful engines and high torque, which makes it possible to effectively drill holes...of a fairly large diameter, including using crowns.

Concrete drilling max. ⌀

The maximum tool diameter that can be used with a rotary hammer when drilling in concrete. See "Maximum drilling diameter in wood" for details.
Bosch PBH 2500 RE 0603344421 often compared
Bosch PBH 2100 RE 06033A9320 often compared