USA
Catalog   /   Tools & Gardening   /   Power Tools   /   Drills & Screwdrivers

Comparison Metabo SB 18 LT BL 602316820 vs Metabo BS 18 LT BL 602325550

Add to comparison
Metabo SB 18 LT BL 602316820
Metabo BS 18 LT BL 602325550
Metabo SB 18 LT BL 602316820Metabo BS 18 LT BL 602325550
Outdated ProductOutdated Product
TOP sellers
Product typedrill driverdrill driver
Designgungun
Specs
Rotation speed600/2100 rpm600/2100 rpm
Max. beats31950 bpm
Torque
60 Nm
with adjustment
23 steps
60 Nm
with adjustment
23 steps
Reducer2-speed2-speed
Number of speeds22
Reversesliderslider
Weight1.6 kg1.5 kg
Chuck
Chuck typekeylesskeyless
Chuck diameter13 mm13 mm
Wood drilling max. 38 mm38 mm
Metal drilling max. 13 mm13 mm
Concrete drilling max. 13 mm
Features
Features
impact mode
motor brake
electronic motor protection
brushless motor
LED light
 
motor brake
electronic motor protection
brushless motor
LED light
In box
case (bag)
charger
case (bag)
charger
Power supply
Power sourcebatterybattery
Battery in set22
Battery platformMetabo 18 VMetabo 18 V
Battery voltage18 V18 V
Battery typeLi-IonLi-Ion
Battery capacity3.5 Ah2 Ah
Compatible batteriesLi-Power 18, LiHD 18Li-Power 18, LiHD 18
Charging time70 min40 min
Charge level indicator
Battery mountsliderslider
Added to E-Catalogoctober 2017september 2017

Max. beats

The number of beats per minute provided by a tool that supports the corresponding mode.

For more information about this mode, see "Functions", here we note that it can be provided both in drills and in screwdrivers and wrenches (see "Device"), and the meaning of the impact mode in these varieties is somewhat different. Therefore, the speeds differ: many drills are capable of delivering about 48,000 beats / min, or even 64,000 beats / min, while in screwdrivers and wrenches, 3200 beats / min are considered “classics of the genre”, and values above 3500 beats / min are practically do not meet.

The general meaning of this indicator is also directly related to the type. So, among drills, the difference in chiseling speed can be quite large. With these tools, more strokes improve overall productivity and efficiency, while fewer strokes improve accuracy and reduce the risk of damaging delicate materials. In screwdrivers and nutrunners, high speed also contributes to overall efficiency, but for most of these tools, the differences in this indicator are not significant enough to be noticeable in practice.

Weight

The total weight of the tool is usually the device itself, without attachments. For battery models (see "Power Source"), usually, the weight is indicated with a standard battery installed; for battery-powered models, the weight can be given both with and without batteries, but in this case this point is not particularly important.

Other things being equal, less weight simplifies work, increases accuracy of movement and allows you to use the tool for longer without tiring. However, note that high power and productivity inevitably increase the mass of the tool; and various tricks to reduce weight increase the price and can reduce reliability. In addition, in some cases, a massive design is more preferable. First of all, this applies to work with a large load — for example, drilling holes of large diameter, or making recesses with impact: a heavy tool is more stable, it is less prone to jerks and shifts due to uneven material, vibration of mechanisms, etc.

It is also worth noting that specific weight values are directly related to the type of tool (see "Device"). Screwdrivers are the lightest — in most of them this figure does not exceed 500 g. Screwdrivers and drill drivers are more "heavy": their average weight is 1.1 – 1.5 kg, although there are many lighter ( 0.6 – 1 kg) and heavier ( 1.6 – 2 kg or more ) models. And clas...sic drills and wrenches have the greatest weight: such a tool must be quite powerful, so for them 1.6 – 2 kg is an average, 2.1 – 2.5 kg is above average, and many units weigh more than 2, 5 kg.

Concrete drilling max. ⌀

The largest diameter of the holes that the tool is capable of making when drilling with a conventional drill in concrete. It is worth considering that in this case we are not talking about reinforced concrete — this material requires special methods of influence (ideally, the use of diamond crowns).

The larger the hole diameter, the higher the resistance of the material, the more power the tool must provide and the higher the load on it. Therefore, the maximum allowable drilling diameter must not be exceeded, even if the chuck allows you to install a thicker drill bit — this can lead to tool breakage and even injury to others.

Features

Impact mode. Ability to work in the so-called shock mode. Usually, this mode is turned on and off at the request of the user, and its meaning and features may be different, depending on the type of instrument (see "Device"). So, in drills, strikes are carried out along the axis of the drill, and their frequency is usually several thousand per minute — this has a positive effect on productivity and allows you to more effectively cope with hard, dense materials (although such a drill can not be replaced anyway). In turn, in screwdrivers and wrenches, it would be more correct to call the impact mode pulsed: in this format of operation, the tool nozzle does not rotate uniformly, but in separate jerks, usually at a frequency of about 3K per minute. It also improves work efficiency, which is especially useful when driving self-tapping screws into dense material and unscrewing old, “stuck” fasteners.

Engine brake. A device that additionally slows down the engine when the tool is turned off. The engine itself (and, accordingly, the working nozzle) after turning off can rotate for quite a long time by inertia; the brake stops this rotation almost immediately, so you do not have to keep the tool on weight for too long.

Power button lock. A function that allows you to lock the power button in the pressed position. Usually, it looks like an additional button insta...lled either on the start key itself or not far from it. This function is very convenient in situations where the tool has to be used for a long time without interruption — for example, when drilling several dozen holes at once: it is easier to fix the start button in the on position than to keep it pressed all the time, additionally straining the finger on the working hand. And the lock is turned off, usually, in the simplest way — for example, by briefly pressing the same start button.

Speed controller. Possibility to additionally limit the revolutions of the tool. By itself, smooth adjustment is available in almost all modern models: the harder you press the start button, the higher the speed. This allows you to directly "on the go" adjust the mode of operation of the tool to the specifics of the situation. And this regulator allows you to set the maximum speed of rotation, so that even when you press the button “to the stop”, the speed of the working nozzle does not exceed the specified value. This function is indispensable for some jobs that require precision — in particular, when processing delicate materials, for which too high a speed is fraught with damage.
Separately, we emphasize that the presence of a speed controller has nothing to do with the number of speeds (see above). For example, a tool may well have several speed modes, in each of which the speed can be further limited using a regulator.

Maintain momentum. A feature that allows you to maintain a constant speed of rotation of the nozzle, regardless of the load on it. Without special adjustment, at a constant engine power, the rotational speed inevitably drops with increasing load and increases with a decrease. And the revs control system monitors the resistance on the nozzle and, if necessary, changes the power in such a way that the rotation speed remains constant. This has a positive effect both on the quality of work and on the service life of the nozzles and the entire tool.

Electronic engine protection. A system that protects the engine from critical overloads — for example, in the event of a jammed drill — and overheating. If the motor load or motor temperature is exceeded, the power to the instrument is automatically turned off to avoid damage to the instrument.

Brushless motor. The presence of a brushless (brushless) motor in an electric tool. Such motors are noticeably superior to traditional collector motors in terms of efficiency, which can significantly reduce energy consumption without sacrificing power; this is especially important for cordless tools (see "Power Source"), where this feature is predominantly found. In addition, brushless motors are quieter and produce virtually no sparks during operation, making them perfect for working in high fire hazard environments. Their main disadvantages are traditional — the complexity of the design and high price.

Safety clutch. A device that protects the engine from damage during a sharp increase in load (for example, due to jamming of the drill). In such cases, the safety clutch disconnects the motor shaft from the tool chuck, avoiding overloads. Note that such devices can be both reusable and disposable — the latter are destroyed when triggered, and to continue working, you will need to install a new clutch.

Backlight. The built-in lamp for illumination of a place of work. This feature can be useful both in the evening/night time, and in hard-to-reach places where there is little penetration of outdoor lighting, as well as in situations where this lighting is too dim. Note that in addition to built-in light sources, modern tools can also be equipped with separate flashlights; for more details about them, see "Complete set".

Display. Own display, which can display various information about the operation and status of the device — for example, the torque or rotation speed set in the settings, and in battery models, there is also a battery charge indicator. Such a screen provides additional convenience and visibility, however, in general, this is a rather specific function that is extremely rare in modern power tools — for example, a speed or torque indicator can be provided directly on the regulator, and a conventional LED can be provided as a charge indicator, giving signals by blinking or colour change.

Synchronization with a smartphone. The ability to connect the instrument to a smartphone or other gadget (such as a tablet) via Wi-Fi or Bluetooth. Such a connection is usually used to adjust operating parameters such as speed or torque; doing this through a mobile application is often more convenient than through the controls on the instrument itself. And some models with this function also allow you to set password access: the tool simply will not respond to the start button until the correct password is entered on the control gadget.

Built-in bubble level. Built-in device to control the angle at which the tool is located to the horizon. As in ordinary levels, the role of the scale in such devices is played by a sealed flask with marks applied to it, containing a brightly coloured liquid and an air bubble. By the position of this bubble relative to the marks, the position of the entire tool is determined — namely, its correspondence to the vertical, horizontal, or pre-set tilt angle (the latter option, however, is almost never found in the built-in levels). At the same time, purely hand tools usually provide a single-axis level that reacts only to deviation from the horizontal forward or backward, and models with the ability to mount on a rack (see below) can also have a circular level that controls compliance with the vertical and determines deviations from it in any direction.

— Revolving mechanism for bits. A mechanism for storing and quickly changing bits used in tools for the corresponding purpose — mainly screwdrivers, but also some screwdrivers (see "Device"). In accordance with the name, the main part of the mechanism is a drum like a revolver, in the compartments of which the bits are stored. The mechanism is located behind the cartridge, and the choice of bits usually occurs as follows: you need to pull back a special casing or handle (if at that moment there was another bit in the cartridge, it will return to the drum), by turning the drum, select the compartment with the desired nozzle, and then move the casing / handle to its original position by pushing the nozzle out of the drum into the chuck. This feature significantly speeds up and simplifies the replacement of nozzles, and also reduces the risk of losing them. On the other hand, the revolving mechanism significantly affects the price and weight of the tool, and its capacity is usually limited to 6 – 8 nozzles. Thus, such a tool is usually also equipped with an adapter for installing bits in the traditional way, from the outside of the cartridge.

Water cooling(coolant). The tool has a coolant — a liquid cooling system (most often plain water) supplied to the working nozzle using a built-in pump. Such a system performs several functions at once. Firstly, it actually cools the nozzle, preventing damage due to overheating. Secondly, the liquid somewhat reduces friction at the point of contact, further reducing the load on the nozzle and increasing its durability. Thirdly, water absorbs dust generated during drilling, this dust does not fly into the air and does not enter the lungs of people around; and cleaning up after work is much easier. On the other hand, water cooling systems are quite expensive and bulky, and with relatively simple work and low loads, it is quite possible to do without coolant.

Soft start. A function that provides a smooth spin-up of the tool motor, with relatively little acceleration. This is achieved by limiting the starting current. Without such a limit, the current drawn by the motor at the time of starting can be quite high, causing the motor to start very abruptly, which increases the risk of letting go of the tool. In addition, current surges can lead to overloads in the network used for power. Soft start allows you to eliminate these phenomena to some extent. Note that it is used only in mains-powered models — the motors in cordless tools are not so powerful that they have the actual “troubles” described for them.

Battery capacity

The capacity of the battery supplied with the respective tool (see "Power Source"). The most modest capacity values in modern power tools do not even reach 1 Ah, such batteries are found mainly among electric screwdrivers(see "Device"). And in powerful professional models there are batteries for 3 – 4 Ah and even more.

Theoretically, the higher the capacity, the longer the tool will be able to work on a single battery charge. However, in fact, things are far from being so clear cut. First, the ampere-hour is a fairly specific unit; its features are such that only batteries with the same voltage can be directly compared by the number of ampere-hours. With a difference in voltage, you need to convert the capacitance to watt-hours and use them for comparison. Secondly, the actual battery life of the tool depends not only on the properties of the battery, but also on the power consumption and other performance characteristics. Thus, it is possible to compare different models in terms of battery capacity only with the same supply voltage and similar capabilities.

Charging time

The time to fully charge the battery that the tool is equipped with from a standard charger (when using other batteries or a “non-native” charger, this time may vary both in one direction and in the other).

For cordless tools in general, see "Power Source". And charging time data gives you an idea of how you'll need to organize your workflow and how long breaks you'll need to charge your batteries. The specific duration of the process will depend both on the capacity of the battery (ceteris paribus, a more capacious model takes longer to charge), and on the technologies used by the manufacturer that increase charging efficiency. However, in general, it is customary to refer to tools with a good charging speed as models where this procedure takes no more than 45 minutes.

We also note that the specific meaning of this parameter also depends on the number of batteries in the kit. Recall that there are often several of them at once (see "Complete battery"), and while one battery is working, the rest can be charged. This allows you to reduce interruptions to a minimum, and even completely do without them. But if there is only one battery, charging breaks will inevitably be required in full. This is especially true for tools with a built-in power source (in models with replaceable batteries, the situation can be corrected by purchasing additional batteries).