USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Kospel EKCO.L2 12 12 kW
400 В
vs Vaillant eloBLOCK VE 12 12 kW
400 В

Add to comparison
Kospel EKCO.L2 12 12 kW 400 В
Vaillant eloBLOCK VE 12 12 kW 400 В
Kospel EKCO.L2 12 12 kW
400 В
Vaillant eloBLOCK VE 12 12 kW
400 В
from $463.96 up to $651.61
Outdated Product
from $594.48 up to $725.04
Outdated Product
TOP sellers
Main
External programmer. 6 power levels.
6 power levels. Connecting a thermostat. Expansion tank 7 L. Frost protection.
Energy sourceelectricityelectricity
Installationwallwall
Typesingle-circuit (heating only)single-circuit (heating only)
Heating area96 m²90 m²
Additional equipment
Remote control unit
Technical specs
Heat output12 kW
12 kW /6+6 кВт/
Min. heat output6 kW
Power supply400 V400 V
Coolant min. T20 °С25 °С
Coolant max. T85 °С85 °С
Heating circuit max. pressure3 bar3 bar
Consumer specs
"Summer" mode
Heated floor mode
Circulation pump
Control buseBus
Boiler specs
Efficiency99 %
Combustion chamberno chamberno chamber
Expansion vessel capacity8 L
Connections
Central heating flow3/4"3/4"
Central heating return3/4"3/4"
Safety
Safety systems
water overheating
water circulation failure
 
water overheating
water circulation failure
frost protection
More specs
Dimensions (HxWxD)710x418x251 mm740x410x315 mm
Weight18 kg24 kg
Added to E-Catalogjanuary 2014june 2012

Heating area

The maximum area of the building that the boiler can effectively heat. However, it is worth considering that different buildings have different thermal insulation properties and modern buildings are much “warmer” than 30-year-old and even more so 50-year-old houses. Accordingly, this paragraph is more of a reference nature and does not allow a full assessment of the actual heated area. There is a formula by which you can derive the maximum heating area, knowing the useful power of the boiler and the climatic conditions in which it will be used; see Heat output for more details. In our case, the heating area is calculated according to the formula "boiler power multiplied by 8", which is approximately equivalent to use in houses that are more than a dozen years old.

Remote control unit

Remote control unit that allows you to control the boiler from another room. It can be connected both wired and wirelessly, often equipped with an electronic display to indicate operating modes, set temperature, emergency situations, etc. Many of these units are advanced devices with the ability to programme the operation of the boiler, for example, for a week; some models can be equipped with temperature sensors that automatically adjust the intensity of the boiler depending on the temperature in the room.

Min. heat output

The minimum heat output at which the heating boiler can operate in constant mode. Operation at minimum power allows you to reduce the number of on-and-off cycles that adversely affect the durability of heating boilers.

Coolant min. T

The minimum operating temperature of the heat medium in the boiler system when operating in heating mode.

Heated floor mode

The boiler has a special mode for underfloor heating systems.

Underfloor heating differs from conventional heating systems primarily by a lower coolant temperature — otherwise the floor could be too hot for comfortable use (plus, high temperatures are also undesirable for flooring and furniture installed on it). In addition, boilers with this function are distinguished by increased pump power. In order to ensure efficient circulation of the coolant through branched heating circuits that have rather high resistance.

Control bus

The control bus with which the boiler is compatible.

The control bus is a communication channel through which control and controlled devices can exchange data. Support for such a channel greatly simplifies the connection of thermostats and other control automation. It is enough that such devices are compatible with the same bus as the boiler. In addition, many types of tyres allow you to create very extensive monitoring and control systems and easily integrate various devices into them, including heating boilers.

In modern heating technology, the most popular tyres are OpenTherm, eBus, Bus BridgeNet and EMS. Here are their key features:

— OpenTherm. A fairly simple standard with modest functionality: it allows only a direct connection between the control and the controlled device and is not designed to create extensive systems. On the other hand, this bus has quite advanced capabilities for controlling heaters: in particular, it allows you to control the temperature not just by turning the boiler on/off, but by changing the power of the gas burner. This mode of operation contributes to saving fuel/energy, as well as reduces wear and increases the life of the heater; and in many cases, a system of two devices (boiler and thermostat) is quite enough for effective heating control. At the same time, the OpenThe...rm standard is simple and inexpensive to implement, which makes it extremely popular in modern boilers. For several reasons, it is mainly used in gas models.

— eBUS. A control bus that has some pretty impressive features. Allows you to combine up to 25 control and 228 controlled devices in one system, with a data transmission distance between individual components up to 1 km. At the same time, eBUS is an open standard, its implementation (at least within the framework of the main functions) is freely available to everyone. And although nowadays eBUS support can be found mainly in Protherm and Vaillant equipment. However, in boilers, this is the second most popular type of control bus, after OpenTherm. It is mainly due to slightly higher cost, while advanced eBUS capabilities are not needed as often.

— Bus BridgeNet. Hotpoint-Ariston proprietary development, used exclusively in boilers of this brand. One of the advantages is a high degree of automation: the user only needs to set the temperature parameters (and for different zones, you can choose custom options) and, if desired, a weekly programme, the rest of the necessary calculations and adjustments will be carried out by the system. However, such features are available only in special control devices such as temperature controllers; in boilers, Bus BridgeNet support usually means only compatibility with such automation.

— EMS. A control bus used primarily in Bosch and Buderus equipment. In general, it is characterized by wide functionality, a high degree of automation and the ability to create extensive control systems. However, note that nowadays you can find both the original EMS and the modified EMS Plus, and these standards are not initially compatible with each other (although support for both of them may well be provided in some devices). So the specific version of the EMS bus should be specified separately. We note that in Bosch devices there is mainly an original version, and in Buderus devices — EMS Plus (although exceptions are possible there and there).

Efficiency

The efficiency of the boiler.

For electric models (see "Energy source"), this parameter is calculated as the ratio of net power to consumed; in such models, indicators of 98 – 99% are not uncommon. For other boilers, the efficiency is the ratio of the amount of heat directly transferred to the water to the total heat amount released during combustion. In such devices, the efficiency is lower than in electric ones; for them, a parameter of more than 90% is considered good. An exception is gas condensing boilers (see the relevant paragraph), where the efficiency can even be higher than 100%. There is no violation of the laws of physics here. It is a kind of advertising trick: when calculating the efficiency, an inaccurate method is used that does not take into account the energy spent on the formation of water vapour. Nevertheless, formally everything is correct: the boiler gives out more thermal energy to the water than is released during the combustion of fuel since condensation energy is added to the combustion energy.

Expansion vessel capacity

The capacity of the expansion tank supplied with the boiler.

The expansion tank is designed to drain excess water from the heating system when the total volume of liquid increases as a result of heating. It consists of two parts connected by a flexible membrane: in one, hermetically closed, there is air under pressure; in the other, excess water enters, compressing the membrane. In this way, a catastrophic increase in pressure in the heating circuit is avoided. The optimal volume of the expansion tank depends on several system parameters, primarily the volume and composition of the coolant; detailed recommendations for calculations can be found in special sources.

Safety systems

Gas pressure drop. This protection system ensures that the boiler is switched off in the event of a critical drop in gas pressure, insufficient for the normal functioning of the burner. In the event of such a fall, the valve that supplies gas to the burner is closed and blocked. After the restoration of gas pressure, it also remains closed; it is necessary to open it and resume the gas supply manually.

Water overheating. A temperature sensor automatically turns off the boiler when the temperature of the water in the system is critically exceeded.

Flame loss. Flame loss protection is based on a sensor that monitors the combustion of gas and automatically stops its supply. It prevents the room from filling with gas and the possible tragic consequences of this.

Draft control. In boilers with an open combustion chamber, to maintain normal conditions in the room where such a boiler is installed, constant removal of products of combustion into the atmosphere is necessary. The lack of a normal draft in the chimney can lead to the accumulation of combustion products in the room. The draft protection system prevents this by automatically turning off the boiler when it detects the release of combustion products outside the chimney.

Power outage. Most modern boilers h...ave an electronic control system; in addition, many structural elements (pumps, valves, fans, etc.) are also powered by electricity. Thus, a power outage during the operation of the boiler will inevitably lead to an abnormal mode of operation, which is fraught with breakdowns and even accidents. To prevent such cases, a power outage protection system is installed, which completely stops the operation of the boiler in the event of a power outage. When the power supply is restored, the boiler needs to be restarted manually.

Water circulation failure. This protection system controls the normal movement of the water through the heating circuit. Water circulation failure can lead to overheating of some elements of the boiler and damage to it. To avoid this, if the circulation is disturbed, the system turns off the pump and shuts off the gas supply to the burner.

Frost protection. A system that controls the temperature in the heating circuit. Freezing of the liquid in the circuit disrupts the normal operation of the heating, which may require heating of the pipes and lead to system damage. To avoid this, when the water temperature drops below 5 °C, the burner is ignited, the circulation pump is activated, and the circuit warms up to a temperature of about 35 °C — thus preventing the formation of ice in the pipes.
Kospel EKCO.L2 12 often compared
Vaillant eloBLOCK VE 12 often compared